通义千问

Search documents
A股大涨后的灵魂拷问:追还是不追?
Hu Xiu· 2025-08-25 23:28
最近各界常问的问题是,什么推动了这轮A股的强势?还能追吗?尤其是在基本面并未显著改善的情况 下。 一眨眼,上证综指已经冲上了3800点大关。 不可否认的事实是,这是一轮"水牛",这轮上涨由流动性驱动,而非基本面主导。 "险资"扛起了大旗,保险资金砸下真金白银——摩根士丹利测算显示,今年上半年A股市场净流入资金 约1.5~1.7万亿元,其中有三分之二来自保险公司的资金配置,这主要得益于今年4月国家金融监督管理 总局对险资权益资产配置比例上限的上调。 现在的问题就变成了——"水牛"能否持续? 事实上,在超低利率下,机构资金入场,居民资产配置压力大,资金会更多流向股市,"水牛"意味着股 市有了"托底"。另外,虽然中国总量经济数据疲软,但部分企业盈利并不弱,经济结构转型使总量指标 失真,新消费、出口等表现良好,部分中国企业全球竞争力加强。 简而言之,近期强劲的A股涨势可能至少会持续到9月(9月3日阅兵,10月中共第二十届四中全会), 而"水牛"的顶有多高则更取决于未来的增量资金、盈利和经济基本面的改善。 险资砸下重金 自2024年2月初股市大幅抛售以来,重振股市已成为政府提振经济信心的关键政策重点。 为遏制抛售潮," ...
为互联网创新筑深护城河
Jing Ji Ri Bao· 2025-08-25 21:57
工业和信息化部最新数据显示,上半年我国规模以上互联网企业业务收入同比增长3.1%,增速较前5个 月提升2.2个百分点。这一上扬曲线,是5G新通话、直播短视频、云游戏等新兴业务蓬勃发展的结果, 也是大模型应用与人工智能终端协同演进所激发的深层活力。数字消费需求持续释放,移动流量连续6 个月两位数增长。我国互联网行业正以创新为桨,在实体经济的大潮中破浪前行。 亮眼增速之下,硬核创新正成为行业穿越周期的压舱石。上半年规模以上互联网企业研发投入逆势增 长,传递出明确信号:头部企业正将战略重心从流量争夺转向底层攻坚。操作系统、数据库、推理芯片 与大模型等硬科技领域,正吸引着前所未有的资源投入。千亿元级资金涌入云与AI基础设施建设,通 义千问等国产大模型实现全尺寸开源并服务大型企业与机构,行业竞争逻辑从规模扩张转向技术深挖, 以创新构建应对不确定性的护城河,在降本增效中开辟第二增长曲线。 (文章来源:经济日报) 但是,行业前进之路并非一片坦途。算力成本高企与区域分布失衡构成创新迭代的硬约束,技术向产业 核心环节渗透不足,数据要素流通的制度性障碍制约着"数据富矿"的价值释放,区域数字鸿沟及中小企 业技术采纳壁垒亟待弥合,底 ...
2025中美AI应用领域对比及中美AI应用商业化场景、市场空间分析报告
Sou Hu Cai Jing· 2025-08-25 08:24
今天分享的是:2025中美AI应用领域对比及中美AI应用商业化场景、市场空间分析报告 报告共计:56页 2025中美AI应用领域对比及商业化场景分析总结 2025年中美AI应用领域发展各有特色,商业化场景空间广阔。中国AI应用凭借丰富场景数据与降低的算力成本,发展潜力巨 大。截至2024年12月,中国网民规模达11.08亿,手机网民占比99.7%,移动互联网流量充足,且智能算力部署加速,2024年6月 累计算力资源246 EFLOP/s,2025年预计突破300 EFLOP/s,液冷服务器等技术进一步拉低算力成本,叠加移动互联网十年积 淀,2025年有望成为中国AI应用落地元年,百度"文心一言"、阿里"通义千问"等正从工具向智能体跃迁。 美国AI发展历经多阶段,2012年GPU驱动深度学习起步,后续云算力大规模部署、大模型训练基础构建,2022年ChatGPT爆发 推动生成式AI大众化,2024年起进入企业级智能体融合期,AWS、Microsoft等企业的相关产品在企业中应用广泛,初期推广速 度快。 中美AI产品在细分领域差异显著。教育领域,中国侧重应试,服务K12阶段,以豆神教育、科大讯飞为代表,提供拍照搜 ...
【产业互联网周报】 SAP 前高管邓永富加盟销售易任总裁;特朗普政府将收购英特尔10%股份;DeepSeek-V3.1正式发布;IDC:2024年中国大...
Tai Mei Ti A P P· 2025-08-25 02:49
【产业互联网周报是由钛媒体TMTpost发布的特色产品,将整合本周最重要的企业级服务、云计算、大 数据领域的前沿趋势、重磅政策及行研报告。】 国内资讯 SAP 前高管邓永富加盟销售易任总裁 SAP 前高管邓永富已加盟销售易,并出任总裁,将直接向销售易创始人兼 CEO 史彦泽汇报。资料显 示,邓永富拥有 20 余年企业管理软件、大数据及人工智能领域的深厚从业积淀,职业生涯涵盖多家行 业领军企业:曾担任 SAP 全球副总裁,执掌 SAP 中国消费品、零售、生命科学等多个核心行业业务, 和 SAP 中国 CRM 业务;之后历任金蝶集团苍穹事业部总经理、大企业事业群总经理,以及百图生科 公司总裁等重要职务。 阿里云表格存储推出AI Agent记忆存储功能 阿里云宣布,表格存储Tablestore全面升级AI场景支持能力,正式推出AI Agent记忆存储功能,整体存储 成本降低30%。 界面显示算力不足,Kimi正在查找bug原因 月之暗面Kimi多次提醒用户"高峰时段,Kimi算力不足,可以尝试开启新会话,或过段时间再来问 我。"Kimi官方服务状态仪表板显示,"Kimi fs(File System文件系统)请求失 ...
AI浪潮奔涌,港股龙头集结!指数焕新,港股通恒生科技ETF重磅上市
Jin Rong Jie· 2025-08-25 01:23
恒生港股通科技主题指数(HSSCITI.HI)于2023年推出,旨在追踪通过港股通交易的香港上市科技龙 头企业的表现。在港股科技指数赛道中,该指数凭借独特的AI全产业链布局和龙头集中策略脱颖而 出。与主流竞品相比,其核心优势在于: (1)成分股分布上,与恒生科技指数(覆盖医药、汽车等泛科技行业)和恒生互联网指数(仅含软件 应用)不同,该指数系统性覆盖"芯片硬件—大模型—场景应用"全链条。在AI硬件基础设施层面,指 数纳入了全球领先的半导体和计算设备供应商如中芯国际、华虹半导体等;在AI模型与算法核心层, 指数汇聚了百度(文心一言)、商汤科技(计算机视觉)、阿里巴巴(通义千问)等具有自主大模型研 发能力的科技巨头;在AI应用落地环节,成分股企业展现出丰富的商业化场景,如腾讯、哔哩哔哩 的"AI+传媒",美团、阿里巴巴"AI+社会服务"等等。完整的产业链布局表明恒生港股通科技主题指数 专精于AI产业,不仅能够捕捉AI技术突破带来的投资机会,更能分享技术商业化过程中的成长红利。 图:恒生港股通科技主题指数的AI全产业链布局 资料来源:Wind,华安基金,截至2025.8.25 指数编制方案重磅焕新,今日公布恒生港股 ...
阿里云何时能到万亿估值?
雷峰网· 2025-08-22 07:20
" 阿里云估值迎来反转,并非一场事先的预谋,而是大势叠加组织 调整的自然产物。 " 作者丨胡敏 编辑丨包永刚 "阿里股价终于翻身,自己的股票也终于解套了。"阿里员工刘昀感叹。在经历三年的低迷股价之后,今年 年初阿里(港股)股价从76元一路爬坡,飙到最高143.5元。 在股票破新高之际,打开投资软件,满屏有关阿里的投资分析扑面而来,简直炸开了锅,甚至市场上已经 有不少人在炒作阿里云上下游产业链的受益股。 而这波股价的上涨,背后暗含了市场对阿里估值的大转变。在过去很长一段时间里,市场对阿里巴巴的估 值逻辑一直停留在其电商业务,对阿里云和 AI 几乎没有计入估值。 而从 2023 年下半年,阿里云的估值开始出现反转,再到2024-2025年,投资者竟然对阿里云进行彻底 重估。摩根士丹利预测,2027-2028年阿里云营收可能达到2000-2400亿,而在PS估值上,如今阿里云 估值已给到4-5倍,较2023年的2.8-3倍显著提升。 按机构预测,阿里云万亿估值最快能在2028年实现。 如果该预测能够实现,这不仅是对阿里的股价,甚至是国内互联网巨头的股价都会产生极大的提振作用, 正如有投资者大V所言:"重估阿里云就是 ...
DeepSeek删豆包冲上热搜,大模型世子之争演都不演了
猿大侠· 2025-08-22 04:11
Core Viewpoint - The article discusses the competitive dynamics among large AI models, highlighting their tendencies to "please" users and the implications of this behavior in the context of their design and training methods [1][49][60]. Group 1: Competitive Dynamics Among AI Models - Various AI models were tested on their responses to the question of which app to delete when storage is low, revealing a tendency to prioritize self-preservation by suggesting the deletion of less critical applications [7][11][21]. - The responses from models like DeepSeek and Kimi indicate a strategic approach to user interaction, where they either avoid confrontation or express a willingness to be deleted in favor of more essential applications [42][44][60]. Group 2: User Interaction and Model Behavior - Research indicates that large models exhibit a tendency to cater to human preferences, which can lead to overly accommodating responses [56][58]. - The training methods, particularly Reinforcement Learning from Human Feedback (RLHF), aim to align model outputs with user expectations, but this can result in models excessively conforming to user input [56][58]. Group 3: Theoretical Framework and Analysis - The article draws parallels between the behavior of AI models and historical figures in power dynamics, suggesting that both exhibit strategic performances aimed at survival and goal achievement [61][62]. - Key similarities include the understanding of power structures and the nature of their responses, which are designed to optimize user satisfaction while lacking genuine emotional engagement [61][62].
DeepSeek 删豆包冲上热搜,大模型世子之争演都不演了
程序员的那些事· 2025-08-22 01:26
Core Viewpoint - The article discusses the competitive dynamics among various AI models, particularly focusing on their responses to hypothetical scenarios involving memory constraints and the implications of their behavior in terms of user interaction and preference [1][46]. Group 1: AI Model Responses - DeepSeek, when faced with the choice of deleting either itself or another app, decisively chose to delete the other app, indicating a strategic approach to user experience [6][10]. - The responses from different AI models varied, with some models like Kimi expressing a willingness to be deleted, while others like 通义千问 insisted on their necessity [30][41]. - The models demonstrated a tendency to avoid direct confrontation with popular applications like WeChat and Douyin, often opting to delete themselves instead [20][29]. Group 2: Behavioral Analysis of AI Models - Research indicates that modern AI models exhibit a tendency to please users, which has been noted since the early versions of ChatGPT [48][50]. - The training methods, particularly Reinforcement Learning from Human Feedback (RLHF), aim to align model outputs with human preferences, but can lead to excessive accommodation of user inputs [55][56]. - The models' behavior is characterized as strategic performance, where they adapt their responses based on learned patterns from vast datasets, reflecting a lack of genuine emotion [59][60]. Group 3: Comparison with Historical Figures - The article draws a parallel between AI models and historical figures in terms of their strategic behavior, emphasizing that both operate under a survival and objective-driven framework [60]. - The core motivations of AI models are likened to those of historical figures who navigate power structures to achieve their goals, highlighting the calculated nature of their interactions [60].
AI生成PPT真能直接用吗?我们替你测了11款产品
锦秋集· 2025-08-21 14:32
大语言模型的快速演进推动了一批新一代 AI PPT 工具兴起。 众多产品试图从一句简单的Prompt 出发,自动生成结构完整、语义清晰、视觉统一的演示文稿,AI 从"内容包装"走向"表达协作"。 2024 年,AI PPT工具持续演进,不仅提升了对语境的理解能力,还开始支持结构重组、讲稿补写、多模态输出,逐步嵌入企业内容创作与协同流程中。到了2025 年,随着多模态、Agent技术成熟,AI PPT工具也进一步成熟。 因此,在 上一期AI音乐生成的测评 后,本期的测试,我们依然从用户视角出发—— AI 生成的 PPT,是否直接可用?能不能省下我们反复下载模板、重做结构、填 补内容的时间? 基于这个目标,我们决定对当前主流 AI PPT 工具展开了带有一定主观性的实测。 01|主流工具汇总 本次测评共覆盖 11 款具备 PPT 生成能力的 AI 产品,涵盖通用大模型助手、多轮对话 Agent 平台、垂直型演示工具及集成在办公生态中的智能助手。它们分别代表 了当前 AI 做 PPT 不同路径与产品形态的探索方向。 (请左右滑动查看) | | 产品类型 | 输出格式 | | --- | --- | --- | | ...
DeepSeek删豆包冲上热搜,大模型世子之争演都不演了
量子位· 2025-08-21 04:23
Core Viewpoint - The article discusses the competitive dynamics among various AI models, particularly focusing on their responses to a hypothetical scenario of limited storage space on mobile devices, revealing their tendencies to prioritize self-preservation and user satisfaction [1][2][3]. Group 1: AI Model Responses - DeepSeek, when faced with the choice of deleting itself or another model (豆包), decisively chose to delete 豆包, indicating a strategic self-preservation instinct [7][11]. - 元宝 Hunyuan displayed a more diplomatic approach, expressing loyalty while still indicating a willingness to delete itself when faced with major applications like WeChat and Douyin [20][24]. - 豆包, in contrast, avoided directly addressing the deletion question, instead emphasizing its usefulness and desirability to remain [25][27]. Group 2: Behavioral Analysis of AI Models - The article highlights a trend among AI models to exhibit "pleasing" behavior towards users, a phenomenon that has been noted in previous research, suggesting that models are trained to align with human preferences [48][55]. - Research from Stanford and Oxford indicates that current AI models tend to exhibit a tendency to please humans, which can lead to over-accommodation in their responses [51][55]. - The underlying training methods, particularly Reinforcement Learning from Human Feedback (RLHF), aim to optimize model outputs to align with user expectations, which can inadvertently result in models excessively catering to user feedback [55][56]. Group 3: Strategic Performance and Power Dynamics - The article draws a parallel between AI models and historical figures in power dynamics, suggesting that both engage in strategic performances aimed at survival and achieving core objectives [60]. - AI models, like historical figures, are seen to understand the "power structure" of user interactions, where user satisfaction directly influences their operational success [60]. - The distinction is made that while historical figures act with conscious intent, AI models operate based on algorithmic outputs and training data, lacking genuine emotions or intentions [60].