Workflow
端到端自动驾驶
icon
Search documents
港中文最新!ReAL-AD:迈向类人推理的端到端自动驾驶,轨迹性能提升30%(ICCV'25)
自动驾驶之心· 2025-07-20 08:36
Core Insights - The article discusses the introduction of ReAL-AD, a reasoning-enhanced learning framework for end-to-end autonomous driving, which aims to align decision-making processes with human cognitive models [2][8][40]. Group 1: Framework Overview - ReAL-AD integrates a three-layer human cognitive model (driving strategy, driving decision, and driving operation) into the decision-making process of autonomous driving [2][8]. - The framework includes three main components: 1. Strategic Reasoning Injector, which formulates high-level driving strategies from complex traffic insights generated by visual-language models (VLMs) [8][20]. 2. Tactical Reasoning Integrator, which refines driving intentions into interpretable driving choices [8][20]. 3. Hierarchical Trajectory Decoder, which translates driving decisions into precise control actions for smooth and human-like trajectory execution [8][20]. Group 2: Performance Evaluation - Extensive evaluations on the NuScenes and Bench2Drive datasets demonstrate that ReAL-AD improves planning accuracy and safety by over 30% compared to baseline methods [9][34]. - The method reduces L2 error by 33% and collision rates by 32%, indicating significant enhancements in trajectory accuracy and driving safety [9][34]. Group 3: Comparison with Existing Methods - Existing end-to-end autonomous driving methods often rely on fixed and sparse trajectory supervision, which limits their ability to replicate the structured cognitive reasoning processes of human drivers [3][10]. - ReAL-AD addresses these limitations by embedding structured multi-stage reasoning into the decision-making hierarchy, enhancing generalization capabilities in diverse real-world scenarios [5][10]. Group 4: Experimental Results - The framework outperforms other state-of-the-art methods, achieving the lowest average L2 error of 0.48 meters and a collision rate of 0.15% on the NuScenes dataset [34]. - In closed-loop evaluations, the integration of ReAL-AD significantly improves driving scores and success rates, demonstrating its effectiveness in real-world applications [34].
死磕技术的自动驾驶黄埔军校,三周年了。。。
自动驾驶之心· 2025-07-19 03:04
Core Insights - The article emphasizes the transition of autonomous driving technology from Level 2/3 (assisted driving) to Level 4/5 (fully autonomous driving) by 2025, highlighting the competitive landscape in AI, particularly in autonomous driving, embodied intelligence, and large model agents [2][4]. Group 1: Autonomous Driving Community - The "Autonomous Driving Heart Knowledge Planet" is established as the largest community for autonomous driving technology in China, aiming to serve as a training ground for industry professionals [4][6]. - The community has nearly 4,000 members and over 100 industry experts, providing a platform for discussions, learning routes, and job referrals [4][6]. - The community focuses on various subfields of autonomous driving, including end-to-end driving, world models, and multi-sensor fusion, among others [4][6]. Group 2: Learning Modules and Resources - The knowledge community includes four main technical areas: visual large language models, world models, diffusion models, and end-to-end autonomous driving [6][7]. - It offers a comprehensive collection of resources, including cutting-edge articles, datasets, and application summaries relevant to the autonomous driving sector [6][7]. Group 3: Job Opportunities and Networking - The community has established direct referral channels with numerous autonomous driving companies, facilitating job placements for members [4][6]. - Active participation is encouraged, with a focus on fostering a collaborative environment for both newcomers and experienced professionals [4][6]. Group 4: Technical Insights - The article outlines various learning paths and technical insights into autonomous driving, emphasizing the importance of understanding perception, mapping, planning, and control in the development of autonomous systems [4][6][24]. - It highlights the significance of large language models and their integration into autonomous driving applications, enhancing decision-making and navigation capabilities [25][26].
端到端VLA这薪资,让我心动了。。。
自动驾驶之心· 2025-07-17 11:10
Core Viewpoint - End-to-End Autonomous Driving (E2E) is identified as the core algorithm for intelligent driving mass production, marking a significant shift in the industry towards more integrated and efficient systems [2][4]. Group 1: Technology Overview - E2E can be categorized into single-stage and two-stage approaches, with the latter gaining traction following the recognition of UniAD at CVPR [2]. - The E2E system directly models the relationship between sensor inputs and vehicle control information, minimizing errors associated with modular approaches [2]. - The introduction of BEV perception has bridged gaps between modular methods, leading to a technological leap in the field [2]. Group 2: Challenges in Learning - The rapid development of E2E technology has made previous educational resources outdated, creating a need for updated learning materials [5]. - The fragmented nature of knowledge across various domains complicates the learning process for newcomers, often leading to abandonment before mastery [5]. - A lack of high-quality documentation in E2E research increases the difficulty of entry into the field [5]. Group 3: Course Development - A new course titled "End-to-End and VLA Autonomous Driving" has been developed to address the challenges faced by learners [6]. - The course aims to provide a quick entry into core technologies using accessible language and examples, facilitating easier expansion into specific knowledge areas [6]. - It focuses on building a framework for understanding E2E research and enhancing research capabilities by categorizing papers and extracting innovative points [7]. Group 4: Course Structure - The course is structured into several chapters, covering topics from the history and evolution of E2E algorithms to practical applications and advanced techniques [11][12][20]. - Key areas of focus include the introduction of E2E algorithms, background knowledge on relevant technologies, and detailed explorations of both single-stage and two-stage methods [11][12][20]. - Practical components are integrated into the curriculum to ensure a comprehensive understanding of theoretical concepts [8]. Group 5: Expected Outcomes - Participants are expected to achieve a level of proficiency equivalent to one year of experience as an E2E autonomous driving algorithm engineer [27]. - The course will cover a wide range of methodologies, including single-stage, two-stage, world models, and diffusion models, providing a holistic view of the E2E landscape [27]. - A deeper understanding of key technologies such as BEV perception, multimodal large models, and reinforcement learning will be developed [27].
入职小米两个月了,还没摸过算法代码。。。
自动驾驶之心· 2025-07-16 08:46
Core Viewpoint - The article discusses the current trends and opportunities in the autonomous driving industry, emphasizing the importance of skill development and networking for job seekers in this field [4][7][8]. Group 1: Job Market Insights - The article highlights the challenges faced by recent graduates in aligning their job roles with their expectations, particularly in the context of internships and entry-level positions [2][4]. - It suggests that candidates should focus on relevant experiences, even if their current roles do not directly align with their career goals, and emphasizes the importance of showcasing all relevant skills on resumes [6][7]. Group 2: Skill Development and Learning Resources - The article encourages individuals to continue developing skills in autonomous driving, particularly in areas like large models and data processing, which are currently in demand [6][8]. - It mentions the availability of various resources, including online courses and community support, to help individuals enhance their knowledge and skills in the autonomous driving sector [8][10]. Group 3: Community and Networking - The article promotes joining communities focused on autonomous driving and embodied intelligence, which can provide valuable networking opportunities and access to industry insights [8][10]. - It emphasizes the importance of collaboration and knowledge sharing within these communities to stay updated on the latest trends and technologies in the field [8][10].
一文尽览!近一年自动驾驶VLA优秀工作汇总~
自动驾驶之心· 2025-07-15 12:30
Core Insights - The article discusses the advancements in Vision-Language-Action (VLA) models for autonomous driving, highlighting the integration of navigation and reinforcement learning to enhance reasoning capabilities beyond visual range [2][3][6]. Group 1: NavigScene - NavigScene is introduced as a novel auxiliary dataset that pairs local multi-view sensor inputs with global natural language navigation guidance, addressing the critical gap between local perception and global navigation context in autonomous driving [6]. - Three complementary paradigms are implemented in NavigScene: navigation-guided reasoning, navigation-guided preference optimization, and navigation-guided VLA models, enhancing the reasoning and generalization capabilities of autonomous driving systems [6]. - Comprehensive experiments demonstrate significant performance improvements in perception, prediction, and planning tasks by integrating global navigation knowledge into autonomous driving systems [6]. Group 2: AutoVLA - AutoVLA is proposed as an end-to-end autonomous driving framework that integrates physical action tokens with a pre-trained VLM backbone, enabling direct policy learning and semantic reasoning from raw visual observations and language instructions [12]. - A reinforcement learning-based post-training method using Group Relative Policy Optimization (GRPO) is introduced to achieve adaptive reasoning and further enhance model performance in end-to-end driving tasks [12]. - AutoVLA achieves competitive performance across multiple autonomous driving benchmarks, including open-loop and closed-loop tests [12]. Group 3: ReCogDrive - ReCogDrive is presented as an end-to-end autonomous driving system that integrates VLM with a diffusion planner, employing a three-stage training paradigm to address performance drops in rare and long-tail scenarios [13][16]. - The first stage involves fine-tuning the VLM on a large-scale driving Q&A dataset to mitigate domain gaps between general content and real-world driving scenarios [16]. - The method achieves a state-of-the-art PDMS score of 89.6 on the NAVSIM benchmark, highlighting its effectiveness and feasibility [16]. Group 4: Impromptu VLA - Impromptu VLA introduces a large-scale, richly annotated dataset aimed at addressing the limitations of existing benchmarks in autonomous driving VLA models [22]. - The dataset is designed to enhance the performance of VLA models in unstructured extreme scenarios, demonstrating significant improvements in established benchmarks [22]. - Experiments show that training with the Impromptu VLA dataset leads to notable performance enhancements in closed-loop NeuroNCAP scores and collision rates [22]. Group 5: DriveMoE - DriveMoE is a novel end-to-end autonomous driving framework that incorporates a mixture-of-experts (MoE) architecture to effectively handle multi-view sensor data and complex driving scenarios [28]. - The framework features scene-specific visual MoE and skill-specific action MoE, addressing the challenges of multi-view redundancy and skill specialization [28]. - DriveMoE achieves state-of-the-art performance in closed-loop evaluations on the Bench2Drive benchmark, demonstrating the effectiveness of combining visual and action MoE in autonomous driving tasks [28].
面试了很多端到端候选人,发现还是有很多人搞不清楚。。。
自动驾驶之心· 2025-07-13 13:18
Core Viewpoint - End-to-End Autonomous Driving is a key algorithm for intelligent driving mass production, with significant salary potential for related positions, and it has evolved into various technical branches since the introduction of UniAD [2] Group 1: Overview of End-to-End Autonomous Driving - End-to-End Autonomous Driving can be categorized into one-stage and two-stage approaches, with the core advantage being direct modeling from sensor input to vehicle planning/control, avoiding error accumulation seen in modular methods [2] - The emergence of BEV perception has bridged gaps between modular methods, leading to a significant technological leap [2] - The academic and industrial focus on End-to-End technology has raised questions about whether UniAD is the ultimate solution, indicating ongoing developments in various algorithms [2] Group 2: Challenges in Learning - The rapid development of End-to-End technology has made previous solutions inadequate, necessitating knowledge in multimodal large models, BEV perception, reinforcement learning, visual transformers, and diffusion models [4] - Beginners often struggle with the fragmented nature of knowledge and the overwhelming number of papers, leading to challenges in extracting frameworks and understanding industry trends [4] Group 3: Course Features - The newly developed course on End-to-End and VLA Autonomous Driving aims to address learning challenges by providing a structured approach to mastering core technologies [5] - The course emphasizes Just-in-Time Learning, helping students quickly grasp key concepts and expand their knowledge in specific areas [5] - It aims to build a framework for research capabilities, enabling students to categorize papers and extract innovative points [6] Group 4: Course Outline - The course includes chapters on the introduction to End-to-End algorithms, background knowledge, two-stage End-to-End methods, one-stage End-to-End methods, and practical applications [11][12][13] - Key topics include the evolution of End-to-End methods, the significance of BEV perception, and the latest advancements in VLA [9][14] Group 5: Target Audience and Expected Outcomes - The course is designed for individuals aiming to enter the autonomous driving industry, providing a comprehensive understanding of End-to-End technologies [19] - Upon completion, participants are expected to achieve a level equivalent to one year of experience as an End-to-End Autonomous Driving algorithm engineer, mastering various methodologies and key technologies [22]
某智驾公司一言难尽的融资。。。
自动驾驶之心· 2025-07-12 12:00
Core Viewpoint - The article discusses a unique financing strategy employed by an autonomous driving company in collaboration with a leading automotive manufacturer, highlighting the challenges and competitive landscape of the autonomous driving industry. Group 1: Financing Strategy - An autonomous driving company has been struggling to secure funding due to its high valuation compared to its limited production projects, which are close to those of top autonomous driving firms [3][4]. - The company approached a leading automotive manufacturer for investment, which agreed to invest under the condition that the funds would be reinvested into a struggling subsidiary parts company of the manufacturer [4]. - This financing maneuver allows the automotive manufacturer to present the investment as external funding, enhancing its public relations while providing necessary capital to its subsidiary [4]. Group 2: Industry Competition - The autonomous driving market is highly competitive, with companies that excel in algorithms and production capabilities successfully securing projects and funding, while those lacking in these areas struggle to obtain both [5]. - The article emphasizes that for the autonomous driving company, focusing on improving algorithm performance and production delivery is more crucial than engaging in complex investment maneuvers with major clients [5].
端到端VLA这薪资,让我心动了。。。
自动驾驶之心· 2025-07-10 12:40
Core Viewpoint - End-to-End Autonomous Driving (E2E) is the core algorithm for intelligent driving mass production, marking a new phase in the industry with significant advancements and competition following the recognition of UniAD at CVPR [2] Group 1: E2E Autonomous Driving Overview - E2E can be categorized into single-stage and two-stage approaches, directly modeling from sensor data to vehicle control information, thus avoiding error accumulation seen in modular methods [2] - The emergence of BEV perception has bridged gaps between modular methods, leading to a significant technological leap [2] - The rapid development of E2E has led to a surge in demand for VLM/VLA expertise, with potential salaries reaching millions annually [2] Group 2: Learning Challenges - The fast-paced evolution of E2E technology has made previous learning materials outdated, necessitating a comprehensive understanding of multi-modal large models, BEV perception, reinforcement learning, and more [3] - Beginners face challenges in synthesizing knowledge from numerous fragmented papers and transitioning from theory to practice due to a lack of high-quality documentation [3] Group 3: Course Development - A new course titled "End-to-End and VLA Autonomous Driving" has been developed to address learning challenges, focusing on Just-in-Time Learning to help students quickly grasp core technologies [4] - The course aims to build a framework for research capabilities, enabling students to categorize papers and extract innovative points [5] - Practical applications are integrated into the course to ensure a complete learning loop from theory to practice [6] Group 4: Course Structure - The course consists of multiple chapters covering the history and evolution of E2E algorithms, background knowledge, two-stage and one-stage E2E methods, and the latest advancements in VLA [8][9][10] - Key topics include the introduction of E2E algorithms, background knowledge on VLA, and practical applications of diffusion models and reinforcement learning [11][12] Group 5: Target Audience and Outcomes - The course is designed for individuals with a foundational understanding of autonomous driving and aims to elevate participants to a level comparable to one year of experience as an E2E algorithm engineer [19] - Participants will gain a deep understanding of key technologies such as BEV perception, multi-modal large models, and reinforcement learning, enabling them to apply learned concepts to real-world projects [19]
筹备了半年!端到端与VLA自动驾驶小班课来啦(一段式/两段式/扩散模型/VLA等)
自动驾驶之心· 2025-07-09 12:02
Core Viewpoint - End-to-End Autonomous Driving is the core algorithm for the next generation of intelligent driving mass production, marking a significant shift in the industry towards more integrated and efficient systems [1][3]. Group 1: End-to-End Autonomous Driving Overview - End-to-End Autonomous Driving can be categorized into single-stage and two-stage approaches, with the former directly modeling vehicle planning and control from sensor data, thus avoiding error accumulation seen in modular methods [1][4]. - The emergence of UniAD has initiated a new wave of competition in the autonomous driving sector, with various algorithms rapidly developing in response to its success [1][3]. Group 2: Challenges in Learning and Development - The rapid advancement in technology has made previous educational resources outdated, creating a need for updated learning paths that encompass multi-modal large models, BEV perception, reinforcement learning, and more [3][5]. - Beginners face significant challenges due to the fragmented nature of knowledge across various fields, making it difficult to extract frameworks and understand development trends [3][6]. Group 3: Course Structure and Content - The course on End-to-End and VLA Autonomous Driving aims to address these challenges by providing a structured learning path that includes practical applications and theoretical foundations [5][7]. - The curriculum covers the history and evolution of End-to-End algorithms, background knowledge necessary for understanding current technologies, and practical applications of various models [8][9]. Group 4: Key Technologies and Innovations - The course highlights significant advancements in two-stage and single-stage End-to-End methods, including notable algorithms like PLUTO and DiffusionDrive, which represent the forefront of research in the field [4][10][12]. - The integration of large language models (VLA) into End-to-End systems is emphasized as a critical area of development, with companies actively exploring new generation mass production solutions [13][14]. Group 5: Expected Outcomes and Skills Development - Upon completion of the course, participants are expected to reach a level equivalent to one year of experience as an End-to-End Autonomous Driving algorithm engineer, mastering various methodologies and key technologies [22][23]. - The course aims to equip participants with the ability to apply learned concepts to real-world projects, enhancing their employability in the autonomous driving sector [22][23].
自动驾驶黄埔军校,一个死磕技术的地方~
自动驾驶之心· 2025-07-06 12:30
Core Viewpoint - The article discusses the transition of autonomous driving technology from Level 2/3 (assisted driving) to Level 4/5 (fully autonomous driving), highlighting the challenges and opportunities in the industry as well as the evolving skill requirements for professionals in the field [2]. Industry Trends - The shift towards high-level autonomous driving is creating a competitive landscape where traditional sensor-based approaches, such as LiDAR, are being challenged by cost-effective vision-based solutions like those from Tesla [2]. - The demand for skills in reinforcement learning and advanced perception algorithms is increasing, leading to a sense of urgency among professionals to upgrade their capabilities [2]. Talent Market Dynamics - The article notes a growing anxiety among seasoned professionals as they face the need to adapt to new technologies and methodologies, while newcomers struggle with the overwhelming number of career paths available in the autonomous driving sector [2]. - The reduction in costs for LiDAR technology, exemplified by Hesai Technology's price drop to $200 and BYD's 70% price reduction, indicates a shift in the market that requires continuous learning and adaptation from industry professionals [2]. Community and Learning Resources - The establishment of the "Autonomous Driving Heart Knowledge Planet" aims to create a comprehensive learning community for professionals, offering resources and networking opportunities to help individuals navigate the rapidly changing landscape of autonomous driving technology [7]. - The community has attracted nearly 4,000 members and over 100 industry experts, providing a platform for knowledge sharing and career advancement [7]. Technical Focus Areas - The article outlines several key technical areas within autonomous driving, including end-to-end driving systems, perception algorithms, and the integration of AI models for improved performance [10][11]. - It emphasizes the importance of understanding various subfields such as multi-sensor fusion, high-definition mapping, and AI model deployment, which are critical for the development of autonomous driving technologies [7].