世界模型(World Model)

Search documents
3个月!搞透VLA/VLA+触觉/VLA+RL/具身世界模型等方向!
具身智能之心· 2025-08-22 00:04
Core Viewpoint - The exploration of Artificial General Intelligence (AGI) is increasingly focusing on embodied intelligence, which emphasizes the interaction and adaptation of intelligent agents within physical environments, enabling them to perceive, understand tasks, execute actions, and learn from feedback [1]. Industry Analysis - In the past two years, numerous star teams in the field of embodied intelligence have emerged, establishing valuable companies such as Xinghaitu, Galaxy General, and Zhujidongli, which are advancing the technology of embodied intelligence [3]. - Major domestic companies like Huawei, JD, Tencent, Ant Group, and Xiaomi are actively investing and collaborating to build a robust ecosystem for embodied intelligence, while international firms like Tesla and investment institutions are supporting companies like Wayve and Apptronik in the development of autonomous driving and warehouse robots [5]. Technological Evolution - The development of embodied intelligence has progressed through several stages: - The first stage focused on grasp pose detection, which struggled with complex tasks due to a lack of context modeling [6]. - The second stage involved behavior cloning, allowing robots to learn from expert demonstrations but revealing weaknesses in generalization and performance in multi-target scenarios [6]. - The third stage introduced Diffusion Policy methods, enhancing stability and generalization by modeling action sequences, followed by the Vision-Language-Action (VLA) model phase, which integrates visual perception, language understanding, and action generation [7][8]. - The fourth stage, starting in 2025, aims to integrate VLA models with reinforcement learning, world models, and tactile sensing to overcome current limitations [8]. Product and Market Development - The evolution of embodied intelligence technologies has led to the emergence of various products, including humanoid robots, robotic arms, and quadrupedal robots, serving industries such as manufacturing, home services, dining, and medical rehabilitation [9]. - The demand for engineering and system capabilities is increasing as the industry shifts from research to deployment, necessitating higher engineering skills for training and simulating strategies on platforms like Mujoco, IsaacGym, and Pybullet [23]. Educational Initiatives - A comprehensive curriculum has been developed to cover the entire technology route of embodied "brain + cerebellum," including practical applications and real-world projects, aimed at both beginners and advanced learners [10][20].
从“内部世界”到虚拟造物:世界模型的前世今生
经济观察报· 2025-08-21 12:29
Core Viewpoint - The article discusses the significant advancements brought by Google's DeepMind with the release of Genie 3, which showcases a new path towards Artificial General Intelligence (AGI) through the concept of "World Models" [4][5][6]. Group 1: Introduction of Genie 3 - On August 5, Google DeepMind launched Genie 3, a model capable of generating interactive 3D virtual environments based on user prompts, demonstrating enhanced real-time interaction capabilities compared to previous AI models [5]. - Genie 3 features a "Promptable World Events" function, allowing users to dynamically alter the generated environment through text commands, showcasing its advanced interactivity [5]. Group 2: Concept of World Models - World Models are inspired by the human brain's ability to create and utilize an "inner world" to simulate future scenarios, which is crucial for decision-making and action [8][9]. - The development of World Models has evolved from early attempts to mimic human cognitive functions to more sophisticated models that can predict and simulate real-world dynamics [10][11]. Group 3: Technical Implementation of World Models - The implementation of World Models involves several key stages: Representation Learning, Dynamic Modelling, Control and Planning, and Result Output, each contributing to the AI's ability to understand and interact with the world [15][16][17][18]. - Representation Learning allows AI to compress external data into an internal language, while Dynamic Modelling enables the simulation of future scenarios based on actions taken [15][16]. Group 4: Applications of World Models - World Models can significantly enhance "embodied intelligence," allowing AI agents to learn through simulated experiences in a safe environment, reducing costs and risks associated with real-world trials [20][21]. - In the realm of digital twins, World Models can create proactive simulations that predict changes and optimize processes in real-time, enhancing automation and decision-making [21][22]. - The education and research sectors can benefit from World Models by creating virtual laboratories for precise predictions and interactive learning environments [22]. Group 5: Potential and Challenges of World Models - While World Models present vast potential for various applications, they also raise ethical and governance concerns, such as the blurring of lines between reality and virtuality, and the potential for behavioral manipulation [24][25][26]. - The debate surrounding World Models as a pathway to AGI highlights differing opinions within the AI community, with some experts advocating for their necessity while others question their effectiveness compared to model-free approaches [28][29][30].
VLA/VLA+触觉/VLA+RL/具身世界模型等方向教程来啦!
具身智能之心· 2025-08-18 00:07
Core Viewpoint - The exploration of Artificial General Intelligence (AGI) is increasingly focusing on embodied intelligence, which emphasizes the interaction and adaptation of intelligent agents within physical environments, enabling them to perceive, understand tasks, execute actions, and learn from feedback [1]. Industry Analysis - In the past two years, numerous star teams in the field of embodied intelligence have emerged, leading to the establishment of valuable companies such as Xinghaitu, Galaxy General, and Zhujidongli, which are advancing the technology of embodied intelligence [3]. - Major domestic companies like Huawei, JD.com, Tencent, Ant Group, and Xiaomi are actively investing and collaborating to build a robust ecosystem for embodied intelligence, while international players like Tesla and investment firms are supporting companies like Wayve and Apptronik in the development of autonomous driving and warehouse robots [5]. Technological Evolution - The development of embodied intelligence has progressed through several stages: - The first stage focused on grasp pose detection, which struggled with complex tasks due to a lack of context modeling [6]. - The second stage involved behavior cloning, allowing robots to learn from expert demonstrations but revealing weaknesses in generalization and performance in multi-target scenarios [6]. - The third stage introduced Diffusion Policy methods, enhancing stability and generalization by modeling action sequences, followed by the emergence of Vision-Language-Action (VLA) models that integrate visual perception, language understanding, and action generation [7]. - The fourth stage, starting in 2025, aims to integrate VLA models with reinforcement learning, world models, and tactile sensing to overcome current limitations [8]. Product and Market Development - The evolution of embodied intelligence technologies has led to the emergence of various products, including humanoid robots, robotic arms, and quadrupedal robots, serving industries such as manufacturing, home services, dining, and medical rehabilitation [9]. - The demand for engineering and system capabilities is increasing as the industry shifts from research to deployment, necessitating training in platforms like Mujoco, IsaacGym, and Pybullet for strategy training and simulation testing [23]. Educational Initiatives - A comprehensive curriculum has been developed to cover the entire technology route of embodied "brain + cerebellum," including practical applications and advanced topics, aimed at both beginners and those seeking to deepen their knowledge [10][20].
VLA/VLA+触觉/VLA+RL/具身世界模型等!国内首个具身大脑+小脑算法实战教程
具身智能之心· 2025-08-14 06:00
Core Viewpoint - The exploration of Artificial General Intelligence (AGI) is increasingly focusing on embodied intelligence, which emphasizes the interaction and adaptation of intelligent agents within physical environments, enabling them to perceive, understand tasks, execute actions, and learn from feedback [1]. Industry Analysis - In the past two years, numerous star teams in the field of embodied intelligence have emerged, establishing valuable companies such as Xinghaitu, Galaxy General, and Zhujidongli, which are advancing the technology of embodied intelligence [3]. - Major domestic companies like Huawei, JD.com, Tencent, Ant Group, and Xiaomi are actively investing and collaborating to build a robust ecosystem for embodied intelligence, while international players like Tesla and investment firms are supporting companies like Wayve and Apptronik in the development of autonomous driving and warehouse robots [5]. Technological Evolution - The development of embodied intelligence has progressed through several stages: - The first stage focused on grasp pose detection, which struggled with complex tasks due to a lack of context modeling [6]. - The second stage involved behavior cloning, allowing robots to learn from expert demonstrations but revealing weaknesses in generalization and performance in multi-target scenarios [6]. - The third stage introduced Diffusion Policy methods, enhancing stability and generalization by modeling action sequences, followed by the emergence of Vision-Language-Action (VLA) models that integrate visual perception, language understanding, and action generation [7][8]. - The fourth stage, starting in 2025, aims to integrate VLA models with reinforcement learning, world models, and tactile sensing to overcome current limitations [8]. Product and Market Development - The evolution of embodied intelligence technologies has led to the emergence of various products, including humanoid robots, robotic arms, and quadrupedal robots, serving industries such as manufacturing, home services, dining, and medical rehabilitation [9]. - The demand for engineering and system capabilities is increasing as the industry shifts from research to deployment, necessitating skills in platforms like Mujoco, IsaacGym, and Pybullet for strategy training and simulation testing [24].
国内首个具身大脑+小脑算法实战全栈教程
具身智能之心· 2025-08-07 02:38
Core Insights - The exploration towards Artificial General Intelligence (AGI) highlights embodied intelligence as a key direction, focusing on the interaction and adaptation of intelligent agents within physical environments [1] - The development of embodied intelligence is marked by the evolution of technology from low-level perception to high-level task understanding and generalization [6][9] Industry Analysis - In the past two years, numerous star teams in the field of embodied intelligence have emerged, establishing valuable companies such as Xinghaitu, Galaxy General, and Zhujidongli, transitioning from laboratories to commercial and industrial applications [3] - Major domestic companies like Huawei, JD, Tencent, Ant Group, and Xiaomi are actively investing and collaborating to build an ecosystem for embodied intelligence, while international players like Tesla and investment firms support advancements in autonomous driving and warehouse robotics [5] Technological Evolution - The evolution of embodied intelligence technology has progressed through several stages: - The first stage focused on grasp pose detection, which struggled with complex tasks due to a lack of context modeling [6] - The second stage involved behavior cloning, allowing robots to learn from expert demonstrations but revealing weaknesses in generalization and performance in multi-target scenarios [6] - The third stage introduced Diffusion Policy methods, enhancing stability and generalization through sequence modeling [7] - The fourth stage, emerging in 2025, explores the integration of VLA models with reinforcement learning and tactile sensing to overcome current limitations [8] Product Development and Market Growth - The advancements in embodied intelligence have led to the development of various products, including humanoid robots, robotic arms, and quadrupedal robots, serving industries such as manufacturing, home services, and healthcare [9] - The demand for engineering and system capabilities is increasing as the industry shifts from research to deployment, necessitating higher engineering skills [13] Educational Initiatives - A comprehensive curriculum has been developed to assist learners in mastering the full spectrum of embodied intelligence algorithms, covering topics from basic tasks to advanced models like VLA and its integrations [9][13]
三问三解 | VLA
Zhong Guo Zhi Liang Xin Wen Wang· 2025-05-15 07:56
Core Insights - The evolution of autonomous driving technology has progressed from rule-based systems to Vision-Language-Action (VLA) models, marking significant advancements in AI applications [1][2]. Group 1: VLA Model Overview - VLA (Vision-Language-Action Model) integrates visual, language, and action capabilities into a single model, enabling end-to-end mapping for action execution based on input [2]. - The VLA model consists of several key modules: visual encoder, language encoder, cross-modal fusion module, and action generation module, facilitating high-level feature extraction and decision-making [4]. - Core features of VLA include multi-modal perception and decision-making, global context understanding, and system transparency, allowing for real-time perception and human-like reasoning [4]. Group 2: VLA Capabilities - VLA can handle complex driving scenarios by understanding both the physical world and its operational logic, surpassing previous models like VLM [9]. - With access to vast amounts of quality data, VLA models can achieve driving performance close to human levels, with potential to exceed human driving capabilities in fully autonomous scenarios [9]. Group 3: World Model Integration - The World Model constructs a virtual environment to simulate and predict real-world traffic scenarios, enhancing the VLA model's understanding of complex situations [10][12]. - It provides richer contextual information for VLA, aids in simulated training, and validates safety through extreme scenario testing [12]. Group 4: Future Developments - The training and deployment of VLA models face significant computational challenges, but advancements in distributed training technologies are expected to improve efficiency [12].