推理能力

Search documents
OpenAI 研究员 Noam Brown:Mid-training 是新的 pre-training
海外独角兽· 2025-07-02 11:03
Core Insights - The article discusses the emergence of reasoning capabilities in AI models, highlighting a shift from mere pattern matching to complex cognitive reasoning, which is essential for scientific discovery and decision-making [4][5]. Group 1: Reasoning as an Emergent Capability - Reasoning is an emergent ability that models can only benefit from once pre-training reaches a certain level [5][11]. - The analogy of "fast thinking and slow thinking" is used to explain the relationship between non-reasoning and reasoning models, where the former corresponds to intuitive responses and the latter to deliberate reasoning [8][11]. - The performance of models in multi-modal tasks depends on their ability to integrate complex information and logical reasoning [12][13]. Group 2: Need for a Universal Reasoning Paradigm - Achieving superintelligence requires a universal reasoning paradigm, as merely scaling pre-training is insufficient [20][21]. - OpenAI's leadership recognized the need for a shift towards reasoning paradigms and reinforcement learning, leading to significant resource allocation in these areas [21][24]. Group 3: Efficient Data Utilization through Reinforcement Learning - Reinforcement learning can enhance the efficiency of data usage, which is crucial as data becomes scarcer than computational power [25]. - Current machine learning models require significantly more samples than humans to learn new concepts, highlighting the need for improved sample efficiency [25][26]. Group 4: Non-Consensus Views on Reasoning Ability - Reasoning is not limited to tasks with clear reward functions; it can also excel in subjective fields where results are harder to quantify [33]. - The alignment of AI with user preferences is critical, and reasoning capabilities can help achieve this alignment while mitigating ethical risks [34][35]. Group 5: Bottlenecks in Test-Time Compute Development - Test-time compute faces cost limitations similar to those encountered during pre-training scaling, where increased model size leads to exponentially rising costs [36]. - The absolute time constraints on model responses hinder the speed of experimental iterations, impacting research efficiency [37][38]. Group 6: Mid-Training as a New Pre-Training Phase - Mid-training is introduced as a phase that adds new capabilities to models before the completion of pre-training, enhancing their generalization and practicality [40][41]. - OpenAI has adopted mid-training strategies in its model training processes to improve alignment and safety [41][42]. Group 7: Insights from The Bitter Lesson for Multi-Agent Systems - The concept of multi-agent systems may lead to the emergence of an "AI civilization" through long-term collaboration and competition among AI agents [44]. - Noam's team is exploring a principled research path that contrasts with traditional heuristic-based approaches in multi-agent research [45][46].
公开模型一切,优于DeepSeek-R1,英伟达开源Llama-Nemotron家族
机器之心· 2025-05-06 08:04
机器之心报道 编辑:+0、刘欣 在大模型飞速发展的今天,推理能力作为衡量模型智能的关键指标,更是各家 AI 企业竞相追逐的焦点。 但近年来,推理效率已成为模型部署和性能的关键限制因素。 基于此,英伟达推出了 Llama-Nemotron 系列模型(基于 Meta AI 的 Llama 模型构建)—— 一个面向高效推理的大模型开放家族,具备卓越的推理能力、推理效 率,并采用对企业友好的开放许可方式。 该系列包括三个模型规模:Nano(8B)、Super(49B)与 Ultra(253B),另有独立变体 UltraLong(8B,支持超长上下文)。 这一系列模型可不简单,不仅具备超强的推理能力,还为企业使用提供开放许可。模型权重和部分训练数据在 Hugging Face 上公开,遵循 NVIDIA Open Model License 和 Llama 社区许可,可商业使用。 Llama-Nemotron 系列模型是首批支持动态推理切换的开源模型,用户在推理时可在标准聊天模式和推理模式之间自由切换,极大地提升了交互的灵活性。 研究主要是利用推理类和非推理类这两类基准测试对 Llama-Nemotron 系列模型进行 ...
从论文中积累复现 R1 的 insight
理想TOP2· 2025-04-30 13:04
以下文章来源于刘聪NLP ,作者周星星 ,恢复了 PPO 的原始目标,采用蒙特卡罗回报估计优势,并设置无偏基线,从而 有效避免了优化偏差,在提升令牌效率的同时,还能维持模型的推理性能。 4. 推理能力的提升是渐进的,没有明显的"顿悟时刻" 6. 避免"长度作弊"需自然扩展响应。 刘聪NLP . NLP刘聪,如货币般流通!这里的刘聪,不会rapper,只发paper!长期关注AIGC前沿内容!还写过两 本书:ChatGPT原理与实战、大型语言模型实战指南!欢迎来讨论AI! 上篇 R1复现小记:在业务场景的两类NLP任务上有显著效果 提到在业务场景中复现 DeepSeek-R1,也简单 记录下最近阅读一些论文过程中积累的 insight。 [1]Logic-RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning [2]An Empirical Study on Eliciting and Improving R1-like Reasoning Models [3]Understanding R1-Zero-Like Training: ...
GPT-5 有了雏形;OpenAI 和 Manus 研发 Agent 的经验;中国大公司扩大算力投资丨 AI 月报
晚点LatePost· 2025-03-08 12:17
2025 年 2 月的全球 AI 重要趋势。 文 丨 贺乾明 2025 年 2 月的 AI 月报,你会看到: 硅谷巨头的新共识:推理能力是大模型的一部分 OpenAI 和 Manus 的 Agent 开发经验 DeepSeek 推动中国大公司加大算力投入,阿里、字节两家加起来,今年就超过 2000 亿 3 家售价过亿的 AI 公司和 23 家获得超过 5000 万美元融资的 AI 公司 OpenAI 时薪 100 美元招专家生产数据提高模型能力 这一期月报中,我们开始邀请研究者、创业者和投资人提供一手视角的对每月 AI 趋势和标志性事件的评述和 洞察。 晚点 AI 月报,每月选取最值得你知道的 AI 信号。 以下是我们第 4 期 AI 月报,欢迎大家在留言区补充我们没有提到的重要趋势。 技术丨GPT-5 雏形出现,行业新共识诞生 DeepSeek 带来的冲击波继续扩散,全球大模型公司陷入混战:不论是马斯克用超过 10 万张 GPU 训练 的 Grok 3,还是 OpenAI 可能投入 10 亿美元训练的 GPT-4.5,或是 Anthropic 融合推理(reasoning) 能力的最新模型 Claude 3 ...