端到端算法
Search documents
市场正在惩罚只懂理论的端到端算法工程师......
自动驾驶之心· 2025-12-29 01:07
该课程涉及的核心算法包括:一段式端到端、两段式端到端、导航信息的量产应用、开闭环强化学习、扩散模型+强化学习、自回归+强化学习、时空联合规划等 等,最后分享一些实际的量产经验。这门课程是自动驾驶之心联合工业界算法专家开设的《面向量产的端到端实战小班课》!课程只有一个重点:聚焦量产。从一 段式、两段式、强化学习、导航应用、轨迹优化、兜底方案再到具体量产经验分享。面向就业直击落地,所以这门课程目前不打算大规模招生, 仅剩「15名」招生 名额...... 仅剩「15个」名额,扫码咨询助理! 讲师介绍 王路, C9本科+QS50 PhD,已发表CCF-A和CCF-B论文若干。现任国内TOP tier1算法专家,目前从事大模型、世界模型等前沿算法的预研和量产,所研发算法已成功 落地并量产,拥有丰富的端到端算法研发和实战经验。 课程大纲 点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 近期和业内一位做招聘的朋友聊了聊,他们反馈中游车企和Tier1 开始铺 人力和资源跟进端到端。但面试的候选人往往只懂一部分,甚至有些还停留在论文层面, 根本没有量产经验和优化能力,端到端 ...
一个在量产中很容易被忽略重要性的元素:导航信息SD
自动驾驶之心· 2025-12-26 01:56
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 最近和业内专家讨论了导航信息SD如何应用到自动驾驶中,分享给大家: 图商提供的导航信息SD/SD Pro目前已经在很多量产方案上使用了。导航可以提供车道、粗粒度的waypoint等信息,相当于给司机提供了一个粗略的全局和局部视 野,将导航信息应用到车端模型上也就顺水渠成。目前来看,导航模块的核心职责有两个: 当然还有非常重要的一part,提供参考线reference line,这是下游规控强需的信息,有了参考线,可以极大的减轻规划的压力,相当于车辆已经有一条行驶的参考路 线,只需在细化即可。 除此之外,还可以提供规划约束与优先级、路径监控和重规划。 1. 车道级的全局路径规划:搜索一条目标车道的最优lane sequence; 2. 给行为规划提供明确的语义指导,方便车辆提前准备变道、减速、让行; 具体涉及到自车定位、道路结构构建和感知定位匹配可以参考下图: 在两段式中,导航输入到感知模型中,输出navi path,navi path作为ml planner的输入进而预测自车的行驶轨迹。 本文均出自平台最新推 ...
一见Auto采访小米陈光的一些信息分享......
自动驾驶之心· 2025-12-26 01:56
以下文章来源于一见Auto ,作者易思琳 一见Auto . 汽车竞争中的野心、方法论与新秩序。21世纪经济报道旗下汽车报道品牌。 作者 | 易思琳 来源 | 见谈|小米陈光:我们不想制造技术焦虑了 点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 >>自动驾驶前沿信息获取 → 自动驾驶之心知识星球 本文只做学术分享,如有侵权,联系删文 理想汽车智驾团队从端到端+世界模型全面切向VLA(Vision Language Action),在算法架构中引入大语言模型(LLM)。和理想一样坚定选择VLA的还 有智驾供应商元戎启行。 行业里也有坚定的VLA反对派。华为表示,不会走向VLA,而是会坚定选择WA(World Action,世界模型)。和华为一样尝试去掉Language环节的还有小 鹏。 而在这场争鸣中,端到端仍展现出巨大的潜力,小米汽车就是在这一方向持续深耕的企业。 "现在竞争太激烈,大家会产生一些焦虑,倾向于通过各种方式或技术让用户觉得更先进。"小米汽车端到端负责人陈光告诉《21汽车·一见Auto》, "但无 论VA、WA还是VLA,在我看来其实都一样,都 ...
小米陈光:我们不想制造技术焦虑了
2 1 Shi Ji Jing Ji Bao Dao· 2025-12-25 08:24
2025年,智能驾驶行业出现"名词过载"现象,从VLA、VA、到WA,分化出多个派别,争鸣不断。 理想汽车智驾团队从端到端+世界模型全面切向VLA(Vision Language Action),在算法架构中引入大 语言模型(LLM)。和理想一样坚定选择VLA的还有智驾供应商元戎启行。 行业里也有坚定的VLA反对派。华为表示,不会走向VLA,而是会坚定选择WA(World Action,世界 模型)。和华为一样尝试去掉Language环节的还有小鹏。 而在这场争鸣中,端到端仍展现出巨大的潜力,小米汽车就是在这一方向持续深耕的企业。 "现在竞争太激烈,大家会产生一些焦虑,倾向于通过各种方式或技术让用户觉得更先进。"小米汽车端 到端负责人陈光告诉《21汽车·一见Auto》,"但无论VA、WA还是VLA,在我看来其实都一样,都是看 如何让模型的智能密度最大。" 现有头部新势力中,小米汽车启动端到端研发较晚。2024年,小米在内部正式整合成立"端到端算法与 功能部",负责量产方案开发。而理想、蔚来都比小米早了至少3个月。 但小米追赶很快。今年2月,小米正式向用户全量推送了300万Clips的端到端(HAD),7月再次 ...
聊聊导航信息SD如何在自动驾驶中落地?
自动驾驶之心· 2025-12-23 00:53
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 最近和业内专家讨论了导航信息SD如何应用到自动驾驶中,分享给大家: 图商提供的导航信息SD/SD Pro目前已经在很多量产方案上使用了。导航可以提供车道、粗粒度的waypoint等信息,相当于给司机提供了一个粗略的全局和局部视 野,将导航信息应用到车端模型上也就顺水渠成。目前来看,导航模块的核心职责有两个: 当然还有非常重要的一part,提供参考线reference line,这是下游规控强需的信息,有了参考线,可以极大的减轻规划的压力,相当于车辆已经有一条行驶的参考路 线,只需在细化即可。 除此之外,还可以提供规划约束与优先级、路径监控和重规划。 1. 车道级的全局路径规划:搜索一条目标车道的最优lane sequence; 2. 给行为规划提供明确的语义指导,方便车辆提前准备变道、减速、让行; 具体涉及到自车定位、道路结构构建和感知定位匹配可以参考下图: 在两段式中,导航输入到感知模型中,输出navi path,navi path作为ml planner的输入进而预测自车的行驶轨迹。 在一段式框架中,SD ...
端到端落地中可以参考的七个Project
自动驾驶之心· 2025-12-19 00:05
Core Viewpoint - The article emphasizes the importance of end-to-end production in autonomous driving technology, highlighting the need for practical experience in various algorithms and applications to address real-world challenges in the industry [2][7]. Course Overview - The course is designed to provide in-depth knowledge on end-to-end production techniques, focusing on key algorithms such as one-stage and two-stage frameworks, reinforcement learning, and trajectory optimization [2][4]. - It includes practical projects that cover the entire process from theory to application, ensuring participants gain hands-on experience [2][12]. Instructor Background - The instructor, Wang Lu, is a top-tier algorithm expert with a strong academic background and extensive experience in developing and implementing advanced algorithms for autonomous driving [3]. Course Structure - The course consists of eight chapters, each focusing on different aspects of end-to-end algorithms, including: 1. Overview of end-to-end tasks and integration of perception and control systems [7]. 2. Two-stage end-to-end algorithm frameworks and their advantages [8]. 3. One-stage end-to-end algorithms with a focus on performance [9]. 4. Application of navigation information in autonomous driving [10]. 5. Introduction to reinforcement learning algorithms and training strategies [11]. 6. Optimization of trajectory outputs using various algorithms [12]. 7. Post-processing strategies for ensuring reliable outputs [13]. 8. Sharing of production experiences and strategies for real-world applications [14]. Target Audience - The course is aimed at advanced learners with a foundational understanding of autonomous driving algorithms, including familiarity with reinforcement learning and diffusion models [15][17].
中游智驾厂商正在快速抢占端到端人才......
自动驾驶之心· 2025-12-15 00:04
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 智驾的技术焦虑,正在中游厂商快速传播。 周末有机会和一位深耕主机厂L2量产交付的负责人线下交流,其认为 明年才是端到端等前沿技术大规模量产的起点。 智驾前沿的技术发展放缓,业内量产方案趋同,L2整体在走下沉路线。二十万以上的乘用车销量在700万左右,但头部新势力的销量不及1/3,更不用说端到端量产 占比的车型。从落地趋势上来看,端到端技术的成熟反而才是更大规模量产的开端。随着明年L3法规的进一步推进, 中游厂商的技术升级也是迫在眉睫。 所以这 两个月很多公司算法负责人联系自动驾驶之心,迫切的想要了解前沿的技术:端到端、世界模型、VLA、3DGS等等。 端到端不仅仅是一个算法,需要完善的云端&车端基建,数据闭环、工程部署、闭环测试、模型优化、平台开发等等,可以预见,中阶智能驾驶的岗位需求会更旺 盛。而在昨天的2025地平线技术生态大会上,地平线CEO也表示将挺进10万级市场,高阶智驾正在迅速下沉至更多的国民车型。明年,智能驾驶的故事将更精彩。 以上。 基本上可以判断端到端、VLA的招聘需求会更旺盛。最近几个月, ...
2025年还存活的自动驾驶公司......
自动驾驶之心· 2025-12-14 02:03
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 近期一个比较明显的信号,L2渗透率狂奔,L3落地在即,L4规模破局。智能驾驶学术界和工业 界关注一直都很多,像端到端、VLA、世界模型、强化学习等等技术方向都还在快速发展。秋 招期间也有很多小伙伴咨询我们业内都有哪些公司,秋招打算看一看。 相比于前两年,有一些公司已经谢幕,有一些公司在合并/收购的路上,当然也有一些新势力异 军突起。自动驾驶行业正在经历新一轮的洗牌和资源整合。今天自动驾驶之心就为大家全面梳 理下2025年智能驾驶相关的公司,有新势力、主机厂、重卡、Robotaxi、Tier1等等,为大家带 来行业的全景图,助力大家选择。 看到这里,25年智能驾驶的落地情况如何?明年的趋势在哪里? 自动之心也为大家做了一次调 研,已经放到我们的专业社区内,欢迎加入交流。 1 新势力 蔚来、小鹏、理想、小米、零跑、滴滴、威马、牛创、极氪、阿维塔、岚图、千里科技、极越等 Tier 1 2 华为、百度、大疆、中兴、腾讯(智能座舱/高精地图/仿真工具链)、上汽零速、鉴智机器人、 momenta、博世中国、麦格纳、佑驾创 ...
正式开课!7个Project搞懂端到端落地现状
自动驾驶之心· 2025-12-12 03:02
Core Insights - The article discusses the evolving recruitment landscape in the autonomous driving industry, highlighting a shift in demand from perception roles to end-to-end, VLA, and world model positions [2] - A new advanced course focused on end-to-end production in autonomous driving has been designed, emphasizing practical applications and real-world experience [2][4] Course Overview - The course is structured into eight chapters, covering various aspects of end-to-end algorithms, including task overview, two-stage and one-stage frameworks, navigation information applications, reinforcement learning, trajectory optimization, and production experience sharing [5][7][8][9][10][11][12][13][14] - The first chapter introduces the integration of perception tasks and learning-based control algorithms, which are essential skills for companies in the end-to-end era [7] - The second chapter focuses on the two-stage end-to-end algorithm framework, discussing its modeling and information transfer between perception and planning [8] - The third chapter covers one-stage end-to-end algorithms, emphasizing their performance advantages and various frameworks [9] - The fourth chapter highlights the critical role of navigation information in autonomous driving and its integration into end-to-end models [10] - The fifth chapter introduces reinforcement learning algorithms, addressing the limitations of imitation learning and the need for generalization [11] - The sixth chapter involves practical projects on trajectory output optimization, combining imitation and reinforcement learning [12] - The seventh chapter discusses post-processing logic for trajectory smoothing and reliability in production [13] - The final chapter shares production experiences from multiple perspectives, focusing on tools and strategies for real-world applications [14] Target Audience - The course is aimed at advanced learners with a foundational understanding of autonomous driving algorithms, reinforcement learning, and programming skills [15][17]
地平线冲进 10 万级市场,认为智驾是新时代的 “自动挡”
晚点Auto· 2025-12-10 15:45
Core Insights - Horizon aims to implement advanced urban driving assistance in vehicles priced below 70,000 yuan, targeting a market where 50% of passenger car sales fall under 130,000 yuan [3][4] - The company plans to collaborate with major manufacturers to achieve a production scale of 10 million units within three to five years, leveraging its self-developed driving algorithms [3][4] - Horizon's ambition is to make advanced driving assistance a standard feature, akin to automatic transmissions, rather than a luxury add-on [4][10] Market Context - The current market for vehicles under 100,000 yuan lacks advanced urban driving features, presenting a significant growth opportunity for Horizon [3][4] - Competitors like BYD, Geely, and Chery have introduced simpler driving assistance features but have not ventured into advanced urban driving solutions [4][9] - The competitive landscape is intensifying, with companies like Momenta and Qualcomm entering the market with rapid advancements in chip development [4][9] Technological Development - Horizon's strategy involves developing its own HSD (High-level Driving) solutions to increase market share and reduce costs through economies of scale [10][11] - The company aims for a tenfold increase in computing power and model capacity with each new generation of chips, with the upcoming Journey 7 series expected to launch alongside Tesla's next-generation AI5 chip [10][11] - The Journey 6 series is crucial for Horizon's strategy, as it is designed to support urban NOA (Navigation on Autopilot) and is expected to meet the rising demand for higher computing power in the industry [11][12]