Workflow
扩散模型
icon
Search documents
公司通知团队缩减,懂端到端的留下来了。。。
自动驾驶之心· 2025-08-19 23:32
Core Viewpoint - The article discusses the rapid evolution and challenges in the field of end-to-end autonomous driving technology, emphasizing the need for a comprehensive understanding of various algorithms and models to succeed in this competitive industry [2][4][6]. Group 1: Industry Trends - The shift from modular approaches to end-to-end systems in autonomous driving aims to eliminate cumulative errors between modules, marking a significant technological leap [2]. - The emergence of various algorithms and models, such as UniAD and BEV perception, indicates a growing focus on integrating multiple tasks into a unified framework [4][9]. - The demand for knowledge in multi-modal large models, reinforcement learning, and diffusion models is increasing, reflecting the industry's need for versatile skill sets [5][20]. Group 2: Learning Challenges - New entrants face difficulties due to the fragmented nature of knowledge and the overwhelming volume of research papers in the field, often leading to early abandonment of learning [5][6]. - The lack of high-quality documentation and practical guidance further complicates the transition from theory to practice in end-to-end autonomous driving research [5][6]. Group 3: Course Offerings - A new course titled "End-to-End and VLA Autonomous Driving" has been developed to address the learning challenges, focusing on practical applications and theoretical foundations [6][24]. - The course is structured to provide a comprehensive understanding of end-to-end algorithms, including their historical development and current trends [11][12]. - Practical components, such as real-world projects and assignments, are included to ensure that participants can apply their knowledge effectively [8][21]. Group 4: Course Content Overview - The course covers various topics, including the introduction to end-to-end algorithms, background knowledge on relevant technologies, and detailed explorations of both one-stage and two-stage end-to-end methods [11][12][13]. - Specific chapters focus on advanced topics like world models and diffusion models, which are crucial for understanding the latest advancements in autonomous driving [15][17][20]. - The final project involves practical applications of reinforcement learning from human feedback (RLHF), allowing participants to gain hands-on experience [21].
端到端VLA的起点:聊聊大语言模型和CLIP~
自动驾驶之心· 2025-08-19 07:20
Core Viewpoint - The article discusses the development and significance of end-to-end (E2E) algorithms in autonomous driving, emphasizing the integration of various advanced technologies such as large language models (LLMs), diffusion models, and reinforcement learning (RL) in enhancing the capabilities of autonomous systems [21][31]. Summary by Sections Section 1: Overview of End-to-End Autonomous Driving - The first chapter provides a comprehensive overview of the evolution of end-to-end algorithms, explaining the transition from modular approaches to end-to-end solutions, and discussing the advantages and challenges of different paradigms [40]. Section 2: Background Knowledge - The second chapter focuses on the technical stack associated with end-to-end systems, detailing the importance of LLMs, diffusion models, and reinforcement learning, which are crucial for understanding the future job market in this field [41][42]. Section 3: Two-Stage End-to-End Systems - The third chapter delves into two-stage end-to-end systems, exploring their emergence, advantages, and disadvantages, while also reviewing notable works in the field such as PLUTO and CarPlanner [42][43]. Section 4: One-Stage End-to-End and VLA - The fourth chapter highlights one-stage end-to-end systems, discussing various subfields including perception-based methods and the latest advancements in VLA (Vision-Language Alignment), which are pivotal for achieving the ultimate goals of autonomous driving [44][50]. Section 5: Practical Application and RLHF Fine-Tuning - The fifth chapter includes a major project focused on RLHF (Reinforcement Learning from Human Feedback) fine-tuning, providing practical insights into building pre-training and reinforcement learning modules, which are applicable to VLA-related algorithms [52]. Course Structure and Learning Outcomes - The course aims to equip participants with a solid understanding of end-to-end autonomous driving technologies, covering essential frameworks and methodologies, and preparing them for roles in the industry [56][57].
都在做端到端了,轨迹预测还有出路么?
自动驾驶之心· 2025-08-19 03:35
Core Viewpoint - The article emphasizes the importance of trajectory prediction in the context of autonomous driving and highlights the ongoing relevance of traditional two-stage and modular methods despite the rise of end-to-end approaches. It discusses the integration of trajectory prediction models with perception models as a form of end-to-end training, indicating a significant area of research and application in the industry [1][2]. Group 1: Trajectory Prediction Methods - The article introduces the concept of multi-agent trajectory prediction, which aims to forecast future movements based on the historical trajectories of multiple interacting agents. This is crucial for applications in autonomous driving, intelligent monitoring, and robotic navigation [1]. - It discusses the challenges of predicting human behavior due to its uncertainty and multimodality, noting that traditional methods often rely on recurrent neural networks, convolutional networks, or graph neural networks for social interaction modeling [1]. - The article highlights the advancements in diffusion models for trajectory prediction, showcasing models like Leapfrog Diffusion Model (LED) and Mixed Gaussian Flow (MGF) that have significantly improved accuracy and efficiency in various datasets [2]. Group 2: Course Objectives and Structure - The course aims to provide a systematic understanding of trajectory prediction and diffusion models, helping participants to integrate theoretical knowledge with practical coding skills, ultimately leading to the development of new models and research papers [6][8]. - It is designed for individuals at various academic levels who are interested in trajectory prediction and autonomous driving, offering insights into cutting-edge research and algorithm design [8]. - Participants will gain access to classic and cutting-edge papers, coding implementations, and methodologies for writing and submitting research papers [8][9]. Group 3: Course Highlights and Requirements - The course features a "2+1" teaching model with experienced instructors and dedicated support staff to enhance the learning experience [16][17]. - It requires participants to have a foundational understanding of deep learning and proficiency in Python and PyTorch, ensuring they can engage with the course material effectively [10]. - The course structure includes a comprehensive curriculum covering data sets, baseline codes, and essential research papers, facilitating a thorough understanding of trajectory prediction techniques [20][21][23].
从顶会和量产方案来看,轨迹预测还有很多内容值得做......
自动驾驶之心· 2025-08-18 12:00
Core Viewpoint - The article emphasizes the ongoing relevance and importance of trajectory prediction in autonomous driving, despite the rise of VLA (Vehicle Localization and Awareness) technologies. It highlights that trajectory prediction remains a critical module for ensuring safety and efficiency in driving systems [1][2]. Group 1: Trajectory Prediction Importance - Trajectory prediction is essential for autonomous driving systems as it helps in identifying potential hazards and planning optimal driving routes, thereby enhancing safety and efficiency [1]. - The quality of trajectory prediction directly impacts the planning and control of autonomous vehicles, making it a fundamental component of intelligent driving systems [1]. Group 2: Research and Development in Trajectory Prediction - Academic research in trajectory prediction is thriving, with significant focus on joint prediction, multi-agent prediction, and diffusion-based approaches, which are gaining traction in major conferences [1]. - The introduction of diffusion models has shown promise in improving multi-modal modeling capabilities for trajectory prediction, addressing the challenges posed by human behavior's uncertainty and multi-modality [2][3]. Group 3: Course Offering and Objectives - A new course on trajectory prediction using diffusion models is being offered, aimed at teaching research methods and paper publication strategies, particularly for multi-agent trajectory prediction [2][9]. - The course will cover various aspects, including classic and cutting-edge papers, baseline models, datasets, and writing methodologies, to help students develop a comprehensive understanding of the field [7][9]. Group 4: Course Structure and Content - The course spans 12 weeks of online group research followed by 2 weeks of paper guidance, with a focus on empirical validation using public datasets like ETH, UCY, and SDD [12][24]. - Key topics include the introduction of diffusion models, traditional trajectory prediction methods, and advanced techniques for integrating social interaction modeling and conditional control mechanisms [28][29].
都在聊轨迹预测,到底如何与自动驾驶结合?
自动驾驶之心· 2025-08-16 00:03
Core Viewpoint - The article emphasizes the significant role of diffusion models in enhancing the capabilities of autonomous driving systems, particularly in data diversity, perception robustness, and decision-making under uncertainty [2][3]. Group 1: Applications of Diffusion Models - Diffusion models improve 3D occupancy prediction, outperforming traditional methods, especially in occluded or low-visibility areas, thus aiding downstream planning tasks [5]. - Conditional diffusion models are utilized for precise image translation in driving scenarios, enhancing system understanding of various road environments [5]. - Stable diffusion models efficiently predict vehicle trajectories, significantly boosting the predictive capabilities of autonomous driving systems [5]. - The DiffusionDrive framework innovatively applies diffusion models to multimodal action distribution, addressing uncertainties in driving decisions [5]. Group 2: Data Generation and Quality - Diffusion models effectively tackle the challenges of insufficient diversity and authenticity in natural driving datasets, providing high-quality synthetic data for autonomous driving validation [5]. - Future explorations will include video generation to further enhance data quality, particularly in 3D data annotation [5]. Group 3: Recent Research Developments - The dual-conditioned temporal diffusion model (DcTDM) generates realistic long-duration driving videos, outperforming existing models by over 25% in consistency and frame quality [7]. - LD-Scene integrates large language models with latent diffusion models for user-controllable adversarial scenario generation, achieving state-of-the-art performance in generating high adversariality and diversity [11]. - DualDiff enhances multi-view driving scene generation through a dual-branch conditional diffusion model, achieving state-of-the-art performance in various downstream tasks [14][34]. Group 4: Traffic Simulation and Scenario Generation - DriveGen introduces a novel traffic simulation framework that generates diverse traffic scenarios, supporting customized designs and improving downstream algorithm performance [26]. - Scenario Dreamer utilizes a vectorized latent diffusion model for generating driving simulation environments, demonstrating superior performance in realism and efficiency [28][31]. - AdvDiffuser generates adversarial safety-critical driving scenarios, enhancing transferability across different systems while maintaining high realism and diversity [68]. Group 5: Safety and Robustness - AVD2 enhances understanding of accident scenarios through the generation of accident videos aligned with natural language descriptions, significantly advancing accident analysis and prevention [39]. - Causal Composition Diffusion Model (CCDiff) improves the generation of closed-loop traffic scenarios by incorporating causal structures, demonstrating enhanced realism and user preference alignment [44].
端到端离不开的轨迹预测,这个方向还有研究价值吗?
自动驾驶之心· 2025-08-16 00:03
Core Viewpoint - The article discusses the ongoing relevance of trajectory prediction in the context of end-to-end models, highlighting that many companies still utilize layered approaches where trajectory prediction remains a key algorithmic focus. This includes both joint trajectory prediction and target trajectory prediction, which continue to be active research areas with significant output in conferences and journals [1]. Group 1: Trajectory Prediction Research - The article emphasizes the importance of multi-agent trajectory prediction, which aims to forecast future movements based on historical trajectories of multiple interacting entities, crucial for applications in autonomous driving, intelligent monitoring, and robotic navigation [1]. - Traditional methods for trajectory prediction often rely on recurrent neural networks, convolutional networks, or graph neural networks, while generative models like GANs and CVAEs, although capable of simulating multimodal distributions, are noted for their inefficiency [1]. Group 2: Diffusion Models - Diffusion models have emerged as a new class of models that generate complex distributions through a stepwise denoising process, achieving significant breakthroughs in image generation and showing promise in trajectory prediction by enhancing multimodal modeling capabilities [2]. - Specific models such as the Leapfrog Diffusion Model (LED) and Mixed Gaussian Flow (MGF) have demonstrated substantial improvements in accuracy and efficiency, with LED achieving real-time predictions and MGF enhancing diversity in trajectory predictions [2]. Group 3: Course Objectives and Structure - The course aims to provide a systematic understanding of trajectory prediction and diffusion models, helping participants integrate theoretical knowledge with practical coding skills, and develop their own research ideas [6]. - Participants will gain insights into writing and submitting academic papers, with a focus on accumulating a methodology for writing and receiving guidance on revisions and submissions [6]. Group 4: Target Audience and Outcomes - The course is designed for graduate students and professionals in trajectory prediction and autonomous driving, aiming to enhance their resumes and research capabilities [8]. - Expected outcomes include a comprehensive understanding of classic and cutting-edge papers, coding implementations, and the development of a research paper draft [8][9]. Group 5: Course Highlights and Requirements - The course features a "2+1" teaching model with experienced instructors and a structured learning experience, ensuring comprehensive support throughout the research process [16][17]. - Participants are required to have a foundational understanding of deep learning and proficiency in Python and PyTorch, with recommendations for hardware specifications to facilitate learning [10][12].
死磕技术的自动驾驶黄埔军校,4000人了!
自动驾驶之心· 2025-08-15 14:23
Core Viewpoint - The article emphasizes the establishment of a comprehensive community focused on autonomous driving, aiming to bridge the gap between academia and industry while providing valuable resources for learning and career opportunities in the field [2][16]. Group 1: Community and Resources - The community has created a closed-loop system covering various fields such as industry, academia, job seeking, and Q&A exchanges, enhancing the learning experience for participants [2][3]. - The platform offers cutting-edge academic content, industry roundtables, open-source code solutions, and timely job information, significantly reducing the time needed for research [3][16]. - Members can access nearly 40 technical routes, including industry applications, VLA benchmarks, and entry-level learning paths, catering to both beginners and advanced researchers [3][16]. Group 2: Learning and Development - The community provides a well-structured learning path for beginners, including foundational knowledge in mathematics, computer vision, deep learning, and programming [10][12]. - For those already engaged in research, valuable industry frameworks and project proposals are available to further their understanding and application of autonomous driving technologies [12][14]. - Continuous job sharing and career opportunities are promoted within the community, fostering a complete ecosystem for autonomous driving [14][16]. Group 3: Technical Focus Areas - The community has compiled extensive resources on various technical aspects of autonomous driving, including perception, simulation, planning, and control [16][17]. - Specific learning routes are available for topics such as end-to-end learning, 3DGS principles, and multi-modal large models, ensuring comprehensive coverage of the field [16][17]. - The platform also features a collection of open-source projects and datasets relevant to autonomous driving, facilitating hands-on experience and practical application [32][34].
端到端盛行的当下,轨迹预测这个方向还有研究价值吗?
自动驾驶之心· 2025-08-12 08:05
Core Viewpoint - The article discusses the ongoing relevance of trajectory prediction in the context of end-to-end models, highlighting that many companies still utilize layered approaches where trajectory prediction remains a key algorithmic focus. The article emphasizes the significance of multi-agent trajectory prediction methods based on diffusion models, which are gaining traction in various applications such as autonomous driving and intelligent monitoring [1][2]. Group 1: Trajectory Prediction Research - Despite the rise of end-to-end models, trajectory prediction continues to be a hot research area, with significant output in conferences and journals [1]. - Multi-agent trajectory prediction aims to forecast future movements based on historical trajectories of multiple interacting agents, which is crucial in fields like autonomous driving and robotics [1]. - Traditional methods often struggle with the uncertainty and multimodality of human behavior, while generative models like GANs and CVAEs, although capable of simulating multimodal distributions, lack efficiency [1]. Group 2: Diffusion Models - Diffusion models have emerged as a new class of models that achieve complex distribution generation through gradual denoising, showing significant breakthroughs in image generation and other fields [2]. - The Leapfrog Diffusion Model (LED) enhances real-time prediction by reducing denoising steps, achieving a 19-30 times speedup while improving accuracy on various datasets [2]. - Mixed Gaussian Flow (MGF) and Pattern Memory-based Diffusion Model (MPMNet) are also highlighted for their advanced performance in trajectory prediction by better matching multimodal distributions and utilizing human motion patterns, respectively [2]. Group 3: Course Objectives and Structure - The course aims to provide a systematic understanding of trajectory prediction and diffusion models, helping students integrate theoretical knowledge with practical coding skills [6]. - It addresses common challenges faced by students, such as lack of direction and difficulties in reproducing research papers, by offering a structured approach to model development and academic writing [6]. - The course includes a comprehensive curriculum that covers classic and cutting-edge papers, coding implementations, and writing methodologies, ultimately guiding students to produce a draft of a research paper [6][9]. Group 4: Target Audience and Requirements - The course is designed for graduate students and professionals in trajectory prediction and autonomous driving, aiming to enhance their research capabilities and resume value [8]. - Participants are expected to have a foundational understanding of deep learning and familiarity with Python and PyTorch [10]. - The course emphasizes the importance of academic integrity and active participation, with specific requirements for attendance and assignment completion [15]. Group 5: Course Highlights and Outcomes - The program features a "2+1" teaching model with experienced instructors providing comprehensive support throughout the learning process [16][17]. - Students will gain access to datasets, baseline codes, and essential papers, facilitating a deeper understanding of the subject matter [20][21]. - Upon completion, students will have produced a research paper draft, a project completion certificate, and potentially a recommendation letter based on their performance [19].
基于扩散模型的多智能体轨迹预测方法1v6小班课来了!
自动驾驶之心· 2025-08-11 05:45
Group 1 - The core focus of the research is on "multi-agent trajectory prediction methods based on diffusion models," which is crucial for applications in autonomous driving, intelligent monitoring, and robot navigation [1][2] - Traditional methods for trajectory prediction often rely on recurrent neural networks, convolutional networks, or graph neural networks, while diffusion models have shown significant improvements in multimodal modeling capabilities [1] - The Leapfrog Diffusion Model (LED) has demonstrated a 19-30 times acceleration in real-time prediction accuracy on datasets such as NBA, NFL, SDD, and ETHUCY [1] Group 2 - The research aims to integrate diffusion generation mechanisms to model trajectory uncertainty while incorporating social interaction modeling and conditional control mechanisms [2] - The expected outcomes include an algorithm framework, quantitative and visual displays, and high-level papers with broad application prospects in autonomous driving, intelligent monitoring, and service robots [2] Group 3 - The course is designed to help students systematically master key theoretical knowledge in trajectory prediction and related fields, addressing gaps in understanding and practical skills [5] - It targets students at various academic levels (bachelor's, master's, PhD) who are interested in trajectory prediction and autonomous driving, aiming to enhance their research capabilities and resume value [7] Group 4 - The course will provide access to public datasets such as ETH, UCY, and SDD, along with baseline code for diffusion model trajectory prediction [19][20] - Students will engage with classic and cutting-edge papers, learning about innovative points, baseline methods, datasets, and writing techniques [5][8]
即将开课!端到端与VLA自动驾驶小班课来啦(扩散模型/VLA等)
自动驾驶之心· 2025-08-10 23:32
Core Viewpoint - End-to-End Autonomous Driving (E2E) is identified as the core algorithm for intelligent driving mass production, with significant advancements and competition emerging in the industry following the recognition of UniAD at CVPR [2][3] Group 1: E2E Autonomous Driving Overview - E2E systems directly model the relationship between sensor inputs and vehicle control information, avoiding error accumulation seen in traditional modular approaches [2] - The introduction of BEV perception has bridged gaps between modular methods, leading to a significant technological leap [2] - The emergence of various algorithms indicates that UniAD is not the ultimate solution for E2E, highlighting the rapid development in this field [2] Group 2: Learning Challenges in E2E - The fast-paced development in E2E technology has made previous educational resources inadequate, necessitating a comprehensive understanding of multiple domains such as multimodal large models, BEV perception, and reinforcement learning [3][4] - Beginners face challenges due to fragmented knowledge and the overwhelming volume of literature, often leading to abandonment before mastering the concepts [3] Group 3: Course Development - A new course titled "End-to-End and VLA Autonomous Driving" has been developed to address learning challenges, focusing on practical and theoretical integration [4][5][6] - The course aims to provide a structured framework for understanding E2E research and enhance research capabilities by categorizing papers and extracting innovative points [5] Group 4: Course Structure - The course includes five chapters covering topics from the introduction of E2E algorithms to practical applications involving RLHF fine-tuning [9][10][11][12][13] - Key areas of focus include the evolution of E2E paradigms, the significance of VLA in the current landscape, and practical implementations of diffusion models [11][12] Group 5: Expected Outcomes - Participants are expected to achieve a level equivalent to one year of experience as an E2E autonomous driving algorithm engineer, mastering various methodologies and key technologies [18] - The course aims to facilitate the application of learned concepts in real-world projects, enhancing employability in the autonomous driving sector [18]