保险
Search documents
2026.01.05-2026.01.09日策略周报:宏观短周期略拐头,A股实现开门红-20260111
Xiangcai Securities· 2026-01-11 06:33
证券研究报告 2026 年 01 月 11 日 湘财证券研究所 策略研究 策略周报 宏观短周期略拐头,A 股实现"开门红" ——2026.01.05-2026.01.09 日策略周报 核心要点: A 股实现"开门红" 分析师:仇华 2026 年第一周,A 股实现"开门红"。据 Wind 数据,2026.01.05-2026.01.09 日,我们关注的 6 个 A 股指数震荡上行,最终:上证指数上涨 3.82%、深 证成指上涨 4.40%、创业板指上涨 3.89%、沪深 300 上涨 2.79%、科创综指 上涨 10.18%、万得全 A 上涨 5.11%。 投资建议 长维度来看,2026 年是"十五五"开局年份,中央经济工作会议给出的政 策基调保持 2025 年的积极态势,将为我国产业升级营造宽松的政策环境, 地址:上海市浦东新区银城路88号 A 股走出"开门红"行情,原因有:一是发改委在"两新"领域提前发力,结 合此前 5000 亿元新型政策性金融工具支持项目落地,但受冬季施工淡季影 响,实物工作量或推迟至 2026 年初集中释放,大概率能够推动固定资产投 资增速短期转向;二是 12 月 PMI、PPI、CP ...
锚定“1234”战略框架,中国太保“大康养”战略启航
Guo Ji Jin Rong Bao· 2026-01-11 06:21
Core Viewpoint - China Pacific Insurance (CPIC) is advancing its "Great Health" strategy, establishing a comprehensive "Great Health" ecosystem with a focus on integrated services and insurance investment [1][2]. Group 1: Strategic Framework - CPIC has defined a "1234" strategic framework for its "Great Health" strategy, emphasizing the creation of an integrated ecosystem [1]. - The strategy includes three core approaches: growth symbiosis, scenario integration, and value co-creation [1]. Group 2: Health Insurance Development - CPIC is optimizing its health insurance product layout and enhancing the quality of health insurance business by aligning commercial insurance with medical insurance [2]. - The company is focusing on the three pillars of pension security, enhancing investment capabilities, customer coverage, and service combinations [2]. Group 3: Service Integration and Innovation - CPIC aims to deepen the integration of services with its main business by embedding services into insurance product design and enhancing customer engagement through high-frequency interactions [3]. - The company is working on a full-cycle service system to improve customer health and optimize operational costs, ultimately reducing risks [3].
中国上市公司“第一大省”:拥有889家,总市值超过浙江+江苏
Sou Hu Cai Jing· 2026-01-11 06:08
资本市场是我国经济的"晴雨表",上市公司则是经济发展的"火车头"。根据中国上市公司协会发布的报告显示,截至2025年底我国境内上市企业达到5469 家,总市值123万亿元。 全年新增116家上市企业,相较2024年增长16%;合计募集资金1317.71亿元,呈现 "量额齐升、硬科技主导" 的特征,主要集中在计算机、通信和其他电子设 备制造业(23),专用设备制造业(14),电气机械和器材制造业(12),汽车制造业(12)。 作为经济第一大省,广东稳居全国第一,截至2025年12月31日,境内上市公司总数达到889家。全年新增21家,包括"瓷砖一哥"马可波罗、全球全景相机第 一名影石创新、家居五金龙头悍高集团等。【注:境外上市公司334家,同样排名全国第一】 上市粤企总市值达到19.32万亿元,超过江苏、浙江两省之和;同比增长29%,增速领先全市场。截至去年底,共有30家公司市值超过千亿元,与上年同期 相比新增6家,其中3家突破万亿元。工业富联以12322亿元位居全省第一,其次是中国平安(11674亿元)、招商银行(10874亿元)。100-1000亿元市值公 司达到285家。 位列第三的江苏,拥有721家上市 ...
短期择时信号翻多,后市或乐观向上:【金工周报】(20260105-20260109)-20260111
Huachuang Securities· 2026-01-11 04:44
Quantitative Models and Construction Methods 1. Model Name: Volume Model - **Construction Idea**: The model uses trading volume data to predict market trends[1][13] - **Construction Process**: The model analyzes the trading volume of various broad-based indices to generate buy or sell signals[1][13] - **Evaluation**: The model is effective in capturing short-term market movements[1][13] 2. Model Name: Feature Dragon Tiger List Institutional Model - **Construction Idea**: This model uses institutional trading data from the Dragon Tiger List to predict market trends[1][13] - **Construction Process**: The model analyzes the trading activities of institutions listed on the Dragon Tiger List to generate buy or sell signals[1][13] - **Evaluation**: The model is useful for understanding institutional trading behavior and its impact on the market[1][13] 3. Model Name: Feature Volume Model - **Construction Idea**: This model uses specific volume characteristics to predict market trends[1][13] - **Construction Process**: The model analyzes specific volume patterns to generate buy or sell signals[1][13] - **Evaluation**: The model is effective in identifying significant volume changes that precede market movements[1][13] 4. Model Name: Intelligent Algorithm CSI 300 Model - **Construction Idea**: This model uses intelligent algorithms to predict the CSI 300 index trends[1][13] - **Construction Process**: The model employs machine learning algorithms to analyze historical data and generate buy or sell signals for the CSI 300 index[1][13] - **Evaluation**: The model leverages advanced algorithms to improve prediction accuracy[1][13] 5. Model Name: Intelligent Algorithm CSI 500 Model - **Construction Idea**: This model uses intelligent algorithms to predict the CSI 500 index trends[1][13] - **Construction Process**: The model employs machine learning algorithms to analyze historical data and generate buy or sell signals for the CSI 500 index[1][13] - **Evaluation**: The model leverages advanced algorithms to improve prediction accuracy[1][13] 6. Model Name: Limit Up and Down Model - **Construction Idea**: This model uses the occurrence of limit up and down events to predict market trends[1][13] - **Construction Process**: The model analyzes the frequency and context of limit up and down events to generate buy or sell signals[1][13] - **Evaluation**: The model is effective in capturing extreme market movements[1][13] 7. Model Name: Up and Down Return Difference Model - **Construction Idea**: This model uses the difference between upward and downward returns to predict market trends[1][13] - **Construction Process**: The model calculates the difference between upward and downward returns to generate buy or sell signals[1][13] - **Evaluation**: The model provides insights into market momentum and potential reversals[1][13] 8. Model Name: Calendar Effect Model - **Construction Idea**: This model uses calendar-based patterns to predict market trends[1][13] - **Construction Process**: The model analyzes historical data to identify recurring calendar-based patterns and generate buy or sell signals[1][13] - **Evaluation**: The model is useful for identifying seasonal trends in the market[1][13] 9. Model Name: Long-term Momentum Model - **Construction Idea**: This model uses long-term momentum to predict market trends[1][14] - **Construction Process**: The model analyzes long-term price momentum to generate buy or sell signals[1][14] - **Evaluation**: The model is effective in capturing long-term market trends[1][14] 10. Model Name: A-Share Comprehensive Weapon V3 Model - **Construction Idea**: This model combines multiple factors to predict market trends[1][15] - **Construction Process**: The model integrates various indicators and models to generate a comprehensive buy or sell signal[1][15] - **Evaluation**: The model provides a holistic view of the market by combining multiple factors[1][15] 11. Model Name: A-Share Comprehensive Guozheng 2000 Model - **Construction Idea**: This model combines multiple factors to predict the Guozheng 2000 index trends[1][15] - **Construction Process**: The model integrates various indicators and models to generate a comprehensive buy or sell signal for the Guozheng 2000 index[1][15] - **Evaluation**: The model provides a holistic view of the market by combining multiple factors[1][15] 12. Model Name: Turnover Rate Inverse Volatility Model - **Construction Idea**: This model uses the inverse relationship between turnover rate and volatility to predict market trends[1][16] - **Construction Process**: The model analyzes the turnover rate and its inverse relationship with volatility to generate buy or sell signals[1][16] - **Evaluation**: The model is effective in identifying periods of high market uncertainty[1][16] Model Backtesting Results 1. Volume Model - **Indicator Value**: All broad-based indices are bullish[1][13] 2. Feature Dragon Tiger List Institutional Model - **Indicator Value**: Bullish[1][13] 3. Feature Volume Model - **Indicator Value**: Bullish[1][13] 4. Intelligent Algorithm CSI 300 Model - **Indicator Value**: Bullish[1][13] 5. Intelligent Algorithm CSI 500 Model - **Indicator Value**: Bullish[1][13] 6. Limit Up and Down Model - **Indicator Value**: Bullish[1][13] 7. Up and Down Return Difference Model - **Indicator Value**: All broad-based indices are bullish[1][13] 8. Calendar Effect Model - **Indicator Value**: Neutral[1][13] 9. Long-term Momentum Model - **Indicator Value**: Some broad-based indices are bullish[1][14] 10. A-Share Comprehensive Weapon V3 Model - **Indicator Value**: Bullish[1][15] 11. A-Share Comprehensive Guozheng 2000 Model - **Indicator Value**: Bullish[1][15] 12. Turnover Rate Inverse Volatility Model - **Indicator Value**: Bearish[1][16]
期刊Risk Management and Insurance Review 2025年28卷第4期目录及摘要|保险学术前沿
13个精算师· 2026-01-11 02:03
声明:本系列文章基于原期刊目录和摘要内容整理而得,仅限于读者交流学习。如有侵权,请联系 删除。 期刊介绍: 《Risk Management and Insurance Review》(RMIR)为季刊,由美国风险与保险协会(American Risk and Insurance Association,ARIA)主办,每年4期。2024年影响因子为1.4,CiteScore为2.5,是 风险管理与保险领域具有较高影响力的国际学术期刊。该刊主要发表风险管理与保险方面的应用研 究、政策讨论以及数据分析类论文,设有Feature Articles、Perspectives与Data Insights等栏目,为学 术研究与实践决策提供重要参考。 本期看点: ●保险公司正面临索赔事件相互关联、保险消费者日益认为保费定价有失公允等问题,这些问题削 弱了市场信任。保险公司必须围绕韧性、风险重构和革新三大原则进行转型。 ●采用简化理赔逻辑的财产险产品可使保险公司综合成本率最多降低五个百分点,这得益于其核保 与理赔管理成本的压缩。然而这类产品也为投保人带来了基差风险。 ●Do customers opt for insura ...
申万宏源策略一周回顾展望(26/01/05-26/01/10):赚钱效应扩散尚不充分
申万宏源研究· 2026-01-10 15:03
Group 1 - The report emphasizes that the spring market has a continuous favorable time window for bullish strategies, with a significant increase in risk appetite. There are no major downside risks, only short-term adjustments after market performance is fully realized. Overall profit-making effects may continue to expand to higher levels, indicating that the short-term market performance is not yet fully realized [4][5]. - The report reaffirms the logic of the spring market, highlighting that there is ample liquidity and favorable conditions for bullish strategies. Key factors include ETF inflows, insurance sector performance, and expectations of foreign capital inflows, which have accelerated the inflow of retail investors and increased trading activity [4][5]. - The report identifies specific time windows in the spring that are conducive to market performance, including potential rebounds before the Lunar New Year in February, policy catalysts from the National People's Congress in March, and the anticipated visit of Trump to China in April, which could stabilize market expectations [4][5]. Group 2 - The report discusses the marginal trading funds and dominant market styles, noting that the net inflow of the CSI A500 ETF has plateaued. The expected incremental inflows are primarily from the insurance sector and foreign capital, while retail investor inflows and increased trading activity are contributing to faster growth in marginal trading funds [8]. - The report maintains that industry themes, such as commercial aerospace, robotics, and nuclear fusion, remain the strongest directions for profit-making effects. The report also highlights the high elasticity of venture capital and pre-IPO technology leaders, which are benefiting from mid-term bull market expectations [12]. - The report predicts that the second quarter of 2026 will still exhibit a volatile pattern, with technology and advanced manufacturing sectors likely to lead the market ahead of a full bull market in the second half of 2026 [12].
黄奇帆:建议额外调度银行、社保、保险、外汇资金 降低企业负债率
Di Yi Cai Jing· 2026-01-10 14:08
黄奇帆表示,私募基金、公募基金,以及各种产业基金是重要的企业股权资本金补充机制,但并未改变企业70%负债率、30%股权资本金(占比)的格局。 一方面,对于微观企业,凡有基金投入的地方都会出现股权结构变化;另一方面,从宏观角度来说,数十万亿元的私募股权基金、公募基金、产业基金依然 是从工商企业本身的股权中"调出来的"。 "中国资本市场讨论不要老在证券、上市这一个范围,资本市场实际上既包含企业股权投资基金、股权补充机制的环节,也包含证券市场本身这个环节,两 个'轮子'一起转。"1月10日,在第三十届(2026年度)中国资本市场论坛上,中国国家创新与发展战略研究会学术委员会常务副主席、重庆市原市长黄奇帆 围绕资本市场改革分享了重要观点。 他强调,资本市场对一个国家、一个社会来说包含两个"轮子":一个是上市公司、证券公司,以及股民等形成的股票市场;另一个是全社会工商企业的资本 金形成和补充机制,涉及到股权投资基金的发展,是超越股票市场的一个更大的范围。 在黄奇帆看来,资本市场两个"轮子"一起转,形成国民经济的一个重要推动力。解决中国企业效益问题和风险问题,需要形成长期的、可持续的企业资本金 补充机制,额外调度资金降低 ...
利率变化,如何影响债券、股票资产的涨跌?|投资小知识
银行螺丝钉· 2026-01-10 13:52
文 | 银行螺丝钉 (转载请注明出处) 年金融危机之后,最大熊市。 而人民币利率2022年之后整体下降,所 以人民币债券,反而出现了一轮牛市。 (2) 利率对股票市场也会产生影响,其 中对红利等价值风格、以及小盘股,影 响更明显。 在利率下降周期: ·小盘股对资金更敏感,利率下降,市场 流动资金充裕,会带动小盘股上涨,例 如2014-2015年的 A股小盘股牛市,当时 就是伴随着人民币利率大幅降低。 ·利率下降,对红利等股息率较高的资产 也有利。 因为像保险、养老金等机构投资者, 篇 要定期现金流,支付给客户。 债券的现金流是债券利息;股票的现金 流就是股息分红。 如果长期债券、存款的利息降低,那保 险等机构,就需要将一部分长期债券的 资金,挪到股息率较高的红利类资产 上,这样才能保证每年现金流稳定。 2022年之后,人民币利率降低,红利指 数就 受 到 了 保 险 等 机 构 的 加 仓 , 2022-2024年红利等策略比较强势。 反过来,美股2022年之后利率上升,美 元长期债券利息比较高,美股投资者对 美股红利指数基金的需求没有太旺盛, 这几年美股红利类品种,反而跑输了美 股大盘。 风险提示 本文仅为 ...
「财闻联播」APP不得频繁索要个人信息权限!新规公开征集意见!沃尔玛将取代阿斯利康纳入纳斯达克100指数
Zheng Quan Shi Bao· 2026-01-10 13:22
其中提到,互联网应用程序(APP)应当在用户使用具体功能时方可索要对应的必要个人信息权限,并 同步告知使用目的,不得提前索要。用户拒绝的,互联网应用程序不得频繁索要影响用户正常使用其他 功能。 市场监管总局公布新规:优化消费维权,规制恶意索赔 宏观动态 事关互联网应用程序个人信息收集使用,网信办公开征求意见 为规范互联网应用程序个人信息收集使用活动,保护个人信息权益,促进个人信息合理利用,根据《中 华人民共和国网络安全法》《中华人民共和国个人信息保护法》《网络数据安全管理条例》等法律法 规,国家互联网信息办公室起草了《互联网应用程序个人信息收集使用规定(征求意见稿)》,现向社 会公开征求意见。意见反馈截止时间为2026年2月9日。 线,制定2026年度安责险事故预防服务费用的预算和目标时,将严格按照不低于本年度实际收取安责险 保费总额的20%进行计提和投入,并确保专款专用、足额使用。 为适应市场监管新形势新要求、提升投诉举报处理质效、更好保护消费者和经营者合法权益,近日,市 场监管总局修订发布《市场监督管理投诉举报处理办法》(以下简称《办法》)。《办法》的修订实施 将有力健全统一权威、科学高效、便民利企的市场 ...
AH股市场周度观察(1月第1周)-20260110
ZHONGTAI SECURITIES· 2026-01-10 13:10
Group 1: A-Share Market - The A-share market showed strong performance this week, with significant increases in trading activity. The CSI 500, CSI 1000, and CSI 2000 indices rose by 7.92%, 7.03%, and 6.54% respectively, indicating a strong performance of small-cap stocks [3][7] - The market's upward trend was driven by increased risk appetite, with technology innovation sectors such as brain-computer interfaces, commercial aerospace, and AI applications becoming the main focus. Industries like electronics, computers, and defense received substantial capital inflows [5][7] - The average daily trading volume reached 2.85 trillion, a significant increase of 35.68% compared to the previous period [3][7] - The outlook for the A-share market remains positive, with expectations of continued upward momentum in the short term, particularly in the first quarter, driven by macroeconomic improvements and favorable policies [8] Group 2: Hong Kong Market - The Hong Kong market exhibited a weaker overall performance this week, with major indices such as the Hang Seng China Enterprises Index, Hang Seng Technology Index, and Hang Seng Index declining by 1.31%, 0.86%, and 0.41% respectively [9] - Despite the overall decline, there was structural differentiation within the market, with the healthcare sector leading gains at 10.06%, while telecommunications, information technology, and energy sectors underperformed [9] - The geopolitical situation, particularly U.S.-China relations, has influenced market sentiment, with recent announcements regarding increased U.S. defense spending impacting risk appetite [9] - Future expectations for the Hong Kong market suggest a potential recovery in the technology sector, influenced by the rising sentiment in the A-share technology sector and domestic economic recovery [9]