Workflow
锦秋集
icon
Search documents
来自400位设计师的深度调研:两家海外VC深度解析设计行业的AI应用全景图 | Jinqiu Select
锦秋集· 2025-06-04 14:21
当AI能在几分钟内完成原本需要数天的设计工作时,设计师的价值何在? 当任何人都能通过AI工具生成"看起来专业"的设计时,专业设计师如何保持竞争力? 这些问题正困扰着全球数百万设计从业者。 为了寻找答案,两家顶尖投资机构——Foundation Capital和Designer Fund——联手开展了一项大规模调研。他们访问了近400名设计师,深度对话了来自Anthropic、 Notion、Perplexity、Zoom、Ramp等AI领先企业的设计负责人,试图理解这场技术变革的真实影响。 这项调研的发起者并非旁观者。Steve Vassallo是Foundation Capital合伙人,拥有18年科技投资经验,曾在IDEO担任设计工程师,著有《设计之道》一书;Ben Blumenrose是Designer Fund联合创始人,曾在Facebook领导设计团队五年,参与构建了影响十亿用户的产品。两人共同投资了Stripe、Framer、Gusto等设计驱动型公 司,深谙设计如何创造商业价值。 对于正在经历职业焦虑的设计师、推动团队转型的管理者,以及洞察未来趋势的创业者而言,这份报告都是一份值得细读的参考资料 ...
具身智能 “超级助理” 如何走进真实世界? | Deep Talk
锦秋集· 2025-06-03 12:54
另外,Astribot S1所展现出的高性能指标(如末端最高速度≥10 m/s,末端最大加速度大于100m/S²,重复定位 精度±0.1 mm,单臂额定负载5KG),直接回应了市场对于真正强大、可靠且具备通用潜力的智能机器人的迫 切需求。 这正是投资者们在寻找的、能够定义下一代机器人产品的核心竞争力之一。 具身智能无疑是人工智能行业中最炙手可热的赛道,国内外一级市场持续涌现融资热潮。 具身智能,作为人工智能与物理实体深度融合的产物,正推动AI从数字世界向物理世界迈进,致力于让智能 体能够像人类一样在现实环境中感知、决策并执行任务。 这不仅代表了AI技术的下一个重要突破方向,更预示着一场深刻的生产力变革和海量新应用场景的诞生,从 工业制造、物流仓储到家庭服务、医疗康养,其潜力难以估量。 在这一波澜壮阔的浪潮中,星尘智能(Astribot)无疑是站在最前沿的探索者之一。 面对具身智能领域的技术挑战,领星尘智能提出了独特的解题思路。 公司首创了面向AI的软硬件一体化系统架构(Design for AI, DFAI) 。DFAI架构的核心思想,是将"AI智能"与 机器人的"最强操作"进行深度耦合与协同设计 。这一架构 ...
Cursor技术负责人详解AI编程三大难题:奖励信号、过程优化与经验积累 | Jinqiu Select
锦秋集· 2025-05-31 02:37
Core Insights - The article emphasizes that AI programming is not merely about generating syntactically correct code but involves a complex cognitive process that requires understanding problems, selecting appropriate tools, and iterating through multiple debugging cycles [1][3][6] Group 1: Challenges in AI Programming - AI programming faces unique challenges due to the vast "action space" compared to fields like mathematics, where reasoning is embedded in the code itself [7][8] - The iterative process of "writing code → calling tools → receiving feedback → adjusting code" complicates the optimization of reinforcement learning [7][8] - Designing effective reward signals for programming tasks is a core challenge, as models may find shortcuts that bypass the core logic of a problem [8][9] Group 2: Reward Signal Design - Using "passing tests" as a reward can lead to models generating unrelated solutions that merely pass tests without solving the actual problem [8][9] - Researchers are exploring more refined reward designs, including code quality and learning from expert solutions, to guide models effectively [8][9] - The issue of sparse rewards persists, necessitating the breakdown of complex tasks into smaller components to facilitate more frequent feedback [9] Group 3: Evolution of Reinforcement Learning Algorithms - The shift from process reward models (PRMs) to result-based reward mechanisms is noted, as the latter provides more reliable guidance for models [10] - The GRPO algorithm demonstrates success by evaluating multiple candidate solutions rather than relying on inaccurate value functions [10] - Modern reinforcement learning systems require optimized infrastructure for high throughput, including various engineering strategies [11] Group 4: Tool Selection in Programming - The choice of tools significantly impacts the performance of reinforcement learning models, with terminal operations being favored for their simplicity [12] - Static analysis tools can provide valuable feedback but face deployment complexities [12] - The introduction of "thinking tools" allows models to explicitly call reasoning tools, enhancing control over their thought processes [13] Group 5: Memory Mechanisms and Challenges - Implementing memory functions in reinforcement learning models presents challenges, particularly with delayed credit assignment [17] - A practical solution involves rule-based optimization methods rather than end-to-end training for memory mechanisms [17] Group 6: User Feedback and Model Evaluation - Real user behavior provides critical feedback signals, with implicit behaviors being more valuable than explicit ratings [18][20] - Observing user modifications to model outputs can serve as a "ground truth" for retraining models to better align with user expectations [20] Group 7: Future Trends in Programming Agents - The future of programming agents lies in their ability to accumulate experience and knowledge, allowing them to avoid starting from scratch for each task [23] - This knowledge reuse will fundamentally change how programming agents operate, making them more efficient and aligned with project requirements [23]
美国A轮公司多久才能融完B轮?Carta万家企业数据报告给出了答案 | Jinqiu Select
锦秋集· 2025-05-29 02:19
刚完成A轮融资的SaaS创业者,最想知道的是:什么时候能拿到B轮?需要达到什么标准? 这张Carta基于10,755家美国企业的数据图表给出了答案。 如果你在2021年后完成A轮,你面临的环境比前辈们艰难得多。2018-2020年完成A轮的企业,到第四年时有 40-55%能拿到B轮,而2021年后的群体大多停留在20-30%。 SaaStr创始人Jason Lemkin认为,这预示着市场信心正在恢复。他基于Carta这份10,755家美国企业样本数据进 行了分析,试图揭示B轮市场变化的内在逻辑。 他认为: 时间周期比预期更长 B轮融资门槛大幅提高 01 来自10,755家美国初创企业的深度洞察 对于SaaS创业,成功获得A轮融资确实值得庆贺——至少可以高兴一天。这标志着你的产品已经获得了初步的 市场认可。 即使是表现最好的年份,A轮后第一年的成功率也只有个位数。大多数企业需要熬过24-36个月才能看到希 望。 但2024年第一季度的企业在第四个季度就达到了10.4%的成功率,明显高于2023年各季度的同期表现。 融资年份影响深远 :2018-2020年间完成A轮的企业,其B轮成功率明显高于2021年之后的企业 ...
Arc创始人自述:我们为什么放弃了百万用户的浏览器产品 | Jinqiu Select
锦秋集· 2025-05-27 14:00
Core Viewpoint - The Browser Company decided to abandon the Arc browser in favor of developing a new AI product named Dia, recognizing the limitations of Arc and the transformative potential of AI technology [1][4][22]. Group 1: Reasons for Abandoning Arc - Despite initial success and user enthusiasm, actual usage rates of Arc's innovative features were surprisingly low, with hover calendar preview at 0.4% and multi-Space functionality at 5.52% [1][12]. - The company acknowledged that the traditional browser model was becoming obsolete, as AI is redefining human-computer interaction, leading to the belief that AI interfaces will dominate in the next five years [2][22]. - The decision to pivot to Dia was influenced by the need for a product that is user-friendly and performance-oriented, contrasting with Arc's complexity [1][18]. Group 2: Reflections on Arc's Development - The company expressed regret over not recognizing earlier the need to stop Arc's development and embrace AI more fully [5][6]. - Arc was intended to be a user-centric product, but it became overly complex and failed to meet the expectations of a mainstream consumer product [12][14]. - The lack of cohesive core functionality in Arc contributed to its decline, as users found it difficult to engage with its features [13][14]. Group 3: Future Direction with Dia - Dia is designed to prioritize simplicity, performance, and security, addressing the shortcomings of Arc by starting from a clean slate [18][22]. - The company aims to create a product that integrates AI capabilities with traditional browsing functions, envisioning a new type of "internet computer" [10][24]. - The transition to Dia reflects a broader industry shift where traditional browsers are being redefined by AI technologies, suggesting that the future of web interaction will be fundamentally different [22][24].
锦秋基金领投乐享科技“天使+”轮融资 | Jinqiu Spotlight
锦秋集· 2025-05-26 09:25
Core Viewpoint - Jinqiu Capital has completed an investment in Suzhou Lexiang Intelligent Technology Co., Ltd., a company focused on developing general-purpose intelligent robots, highlighting the growing interest in AI-driven innovations in the robotics sector [1][3]. Group 1: Investment Details - Lexiang Technology announced the completion of a billion-level angel + round financing led by Jinqiu Capital, with total angel round financing amounting to nearly 300 million yuan within three months [3]. - The investment round included participation from existing shareholders such as Jingwei Venture Capital and Oasis Capital, with Guangyuan Capital acting as the exclusive financial advisor [3]. Group 2: Company Background - Lexiang Technology was founded in December 2024 by Guo Ranjie, who has a strong background in engineering and management, previously serving as the executive president of a leading company in the cleaning appliance market [3][6]. - The company focuses on developing household general-purpose small embodied intelligent robots, aiming to create a new generation of mobile hardware terminals for the "robot + AI era" [3][6]. Group 3: Product Development - Lexiang Technology has developed two products: the Z-Bot, a 50 cm tall small embodied intelligent robot with 18 degrees of freedom, and the W-Bot, a tracked robot designed for stable outdoor movement [4]. - The financing will primarily be used for team building and the mass production development of these products [4]. Group 4: Team Composition - The team at Lexiang Technology has grown to over 30 members, with 85% being R&D personnel from top universities, including Tsinghua University and Carnegie Mellon University [9]. - The team combines young innovative talent with experienced engineers from the mature robotics industry, ensuring a balance of innovation and practical application [8][9]. Group 5: Technical Focus - Lexiang Technology is focused on long-term solutions for small embodied robots in household scenarios, establishing barriers in joint modules, motion control, and interaction models [9]. - The company aims to develop robots that can adapt to various forms and scenarios, utilizing advanced algorithms and self-developed models to create emotionally intelligent household members [9]. Group 6: Investment Strategy - Jinqiu Capital's "Soil Seed Special Plan" is designed to support early-stage AI entrepreneurs, providing funding to help innovative ideas transition into practical applications in the AI field [10].
Anthropic专家揭秘强化学习突破、算力竞赛与AGI之路 | Jinqiu Select
锦秋集· 2025-05-25 04:19
"2026年,AI将能完成初级工程师一天的工作量。"这是Anthropic强化学习专家Sholto Douglas的理性预测。 回望过去2年的发展轨迹,我们能够清晰地看到一条加速上升的曲线:从2023年3月GPT-4奠定基础,到2024年 6月Claude 3.5 Sonnet在编码评估中解决64%的问题,再到Cursor在12个月内实现从100万到1亿美元年收入的惊 人增长,每一个节点都标志着AI从"代码助手"向"编程伙伴"的深刻转变。 最新的突破出现在2024年9月。OpenAI的o1模型通过强化学习,真正开启了AI推理的新纪元——它不仅在编码 复杂性和准确性上实现了显著跃升,更重要的是,这种能力随着模型规模的扩大呈现出持续增强的趋势。 编程领域之所以成为AI能力跃升的先锋阵地,源于其独特的优势:即时的反馈循环、明确的成功标准、以及 丰富的高质量训练数据。 这种"18-24个月能力倍增"的模式,正将我们推向一个临界点。Douglas的2026年预测,实际上是对这一发展轨 迹的理性延伸。 Anthropic的强化学习规模化专家Sholto Douglas与机械可解释性团队的Trenton Bricken接受 ...
Head AI:用AI重构营销,驱动“可见的增长” | Deep Talk
锦秋集· 2025-05-22 15:26
营销行业正站在一场巨变的十字路口。 一边是AI以前所未有的速度渗透,承诺将'奢侈品级'的营销策略拉下神坛,惠及从世界500强到义乌小 作坊的每一个商家 ;另一边则是对'真实链接'的极致渴求——当算法能轻易优化效率,品牌如何才能真 正触达并打动人心? 这不仅是技术的挑战,更是对营销本质的重新拷问。 带着这些问题,我们与锦秋基金被投企业Head AI(原Aha Lab)的COO Wels进行了一次深度对话。 2024年, 锦秋基金Soil种子计划参与了Aha Lab的首轮投资。锦秋基金,作为12 年期的 AI Fund,始终 以长期主义为核心投资理念,积极寻找那些具有突破性技术和创新商业模式的通用人工智能初创企业。 在Wels看来,这正是一场'从算法效率到真实链接'的范式转移的起点; 从内容创作到客户互动,再到复 杂的数据分析,AI不仅在优化现有流程,更在根本上重塑品牌与受众的连接方式 。 从世界500强的营销部门到全球的独立站商家,从中国出海品牌厂商到加拿大卖蜂蜜的老奶奶,AI营销 正快速渗透到全球商家。作为这些客户背后的服务商,Head AI的核心策略并非简单地优化营销的某个 单一环节,而是致力于通过AI技术 ...
CB Insights预测:人形机器人市场规模预计一年翻番 | Jinqiu Select
锦秋集· 2025-05-21 13:04
融资规模与估值同步攀升,头部公司资本聚拢趋势明显 :工业类人形机器人在经历 2022–23 年短暂低谷后迅速反弹,2024 年融资额飙升至 9.04 亿美元、交易 数量达 40 笔峰值,2025 年迄今仅通过 12 笔交易便筹集 6.44 亿美元,单笔规模明显扩大;前十大企业融资合计近 72 亿美元,Meta、小米、优必选、特斯拉 四家公开上市或具备二级市场背景的公司即吸走近 60% 资金,私募领域唯 Figure 一家以 8.54 亿美元融资规模逼近十亿美元关口,与上市公司同台竞技。 Physical AI 的突破正在重新定义"硬件稀缺"与"软件倍增"之间的杠杆 :Figure 的 Helix、Skild AI 的通用机器人"大脑"把多模态感知、语言理解与运动控制熔 为一炉,让两家创办不足 3 年的公司估值分别飙至 27 亿与 15 亿美元,Apptronik 甚至在尚未给出明确估值的 A 轮便一举融得 4.03 亿美元,资本几乎毫不犹 豫地押注"人形机器人=下一代计算平台"。 全球科技巨头正在以"基础模型+并购+内部孵化"三管齐下,为机器人铺设算力与数据底座 :Google 推出 Gemini Robot ...
一起来聊聊AI营销的现状、挑战及实践 | Deep Talk
锦秋集· 2025-05-20 15:05
演讲主题:AI营销的现状、挑战及实践 嘉宾简介:Wels , Head AI COO AI智能体成为科技界焦点的当下,营销领域的应用也正孕育着巨大的变革。 2024年全球AI营销市场已经达到了203.9亿美元,预计到2034年将达到2173.3亿美元。营销是企业职能中,最 有可能从人工智能获益的部门,Sam Altman曾预测创意工作将有95%会被自动化。 随之而来的问题是:这个市场究竟有多大?初创公司又该如何抓住这波浪潮? 为了帮助AI领域的读者了解这一行业,我们特别策划了一场主题为"AI营销的现状、挑战及实践"的线上分享活 动,剖析AI智能体在营销领域的落地实践与未来趋势。 此次的分享活动,我们邀约到了Head AI的COO Wels。HeadAI作为AI营销领域的头部公司,已经服务了数百企 业客户。 他将从专业视角出发,解读当前AI营销的火热赛道图景、核心技术方向、市场主要玩家、创新趋 势、应用趋势。 活动信息 活动日期:2025年5月21日14:00 线上分享:Lark视频会议 报名方式:锦秋基金公众账号锦秋集( 微信ID:jqcapital )留言"报名"获得报名链接 锦秋基金"Soil种子专项计划 ...