Workflow
Shenzhen Intellifusion Technologies (688343)
icon
Search documents
云天励飞副总裁郑文先:AI进入推理时代 国产芯片迎窗口期
第二个瓶颈则来自高企不下的成本。"现在AI推理的成本偏高,限制了AI的大规模应用。"郑文先指出, 大模型训练所需的算力资源、数据中心背后的电力和用能支出等一系列成本,最终都会叠加到企业身 上,推高整体研发投入,使AI产品和解决方案的商业化承压。 对于外界反复讨论的"AI泡沫"问题,郑文先态度相对理性,"泡沫和繁荣本就是一体两面。"他认为,人 工智能作为第四次工业革命的关键性技术,未来必然是一个底层"根技术",将深度嵌入各个产业的发展 进程之中,"即便存在泡沫,也只能说是阶段性的短暂过热。随着各种壁垒和瓶颈不断被打通,未来仍 将是一项具有划时代意义的技术。" 郑文先介绍,云天励飞自2014年成立起就在持续投入AI推理芯片研发,已推出四代基于深度神经网络 架构的自研NPU,并基于最新的NPU架构推出多款芯片,可应用于端侧与边缘侧AI推理场景。 郑文先还谈到,公司正在研发的新一代芯片会采用GPNPU架构,"一方面更好适应GPU的CUDA生态, 为客户模型牵引提供方便;另一方面又兼顾NPU的高效和灵活。"他表示,这种架构下的产品在成本端 更具优势,也更符合未来大模型在端侧与边缘侧规模化落地的实际需求。 21世纪经济报 ...
二十载不忘初心 新时代筑梦前行 “安永企业家奖2025”评选结果揭晓
Core Insights - The 20th "EY Entrepreneur Of The Year" awards were announced, recognizing 12 outstanding entrepreneurs from mainland China and Hong Kong/Macau, emphasizing innovation and commitment to the private economy in the new era [1] - The theme of this year's awards is "Twenty Years of Unwavering Original Intent, Building Dreams in the New Era," highlighting the importance of technology and innovation in driving business success [1] - The awards align with China's 14th Five-Year Plan, focusing on high-level technological self-reliance and the development of new productive forces [1][2] Group 1: Award Significance - The awards serve as a platform for entrepreneurs to exchange ideas and collaborate, reflecting the pulse of national economic development [2] - The event took place in Hong Kong, leveraging its unique position as a gateway for mainland companies to expand internationally [2] - The recognition of entrepreneurs is crucial for promoting new productive forces and supporting the construction of a modern economic system in China [2][3] Group 2: Industry Representation - Award winners come from various sectors, including technology, life sciences and healthcare, manufacturing, and services, all demonstrating innovation through technology [1][3] - The private economy has become an indispensable force in driving high-quality economic development and deepening global economic cooperation [3] - The implementation of the "Private Economy Promotion Law" in May aims to create a stable and transparent legal environment for private enterprises [3] Group 3: Notable Winners - In the technology sector, notable winners include: - Chen T, CEO of Shenzhen Yuntian Lifei Technology Co., Ltd. - Che, CEO of Yunzhisheng Intelligent Technology Co., Ltd. - Guijia Ya, Chairman of Simu Technology [5] - In the manufacturing sector, winners include: - Ge Jiang, Chairwoman of Weisheng Information Technology Co., Ltd. - Li Peiliang, Chairman of Dongjiang Group (Holdings) Limited [6] - In the life sciences and healthcare sector, Lu Xianping, Founder and CEO of Shenzhen Microchip Biotechnology Co., Ltd., was recognized [8]
云天励飞取得水面物体监测方法及相关装置专利
Sou Hu Cai Jing· 2025-12-05 12:46
声明:市场有风险,投资需谨慎。本文为AI基于第三方数据生成,仅供参考,不构成个人投资建议。 来源:市场资讯 深圳云天励飞技术股份有限公司,成立于2014年,位于深圳市,是一家以从事软件和信息技术服务业为 主的企业。企业注册资本35882.666万人民币。通过天眼查大数据分析,深圳云天励飞技术股份有限公 司共对外投资了33家企业,参与招投标项目276次,财产线索方面有商标信息415条,专利信息1872条, 此外企业还拥有行政许可34个。 国家知识产权局信息显示,青岛云天励飞科技有限公司、深圳云天励飞技术股份有限公司取得一项名 为"水面物体监测方法、装置、电子设备及存储介质"的专利,授权公告号CN115841619B,申请日期为 2022年12月。 天眼查资料显示,青岛云天励飞科技有限公司,成立于2017年,位于青岛市,是一家以从事科技推广和 应用服务业为主的企业。企业注册资本500万人民币。通过天眼查大数据分析,青岛云天励飞科技有限 公司参与招投标项目54次,专利信息102条,此外企业还拥有行政许可8个。 ...
机器人板块探底回升!大族激光涨超4%,机器人ETF基金(159213)微涨,昨日小幅吸金!美国目光移向机器人板块,有何影响?基金经理火线解读
Sou Hu Cai Jing· 2025-12-05 04:22
Core Viewpoint - The A-share market shows a mixed trend with the aviation sector performing well while the robotics sector experiences fluctuations, influenced by recent developments in humanoid robotics and U.S. policy shifts towards robotics technology [1][5][7]. Robotics Sector Performance - As of 11:30, the Robotics ETF (159213) saw a slight increase of 0.52%, with over 1.7 million yuan flowing into the fund yesterday [1]. - The top components of the Robotics ETF include significant gains from companies like Dazhong Laser, which rose over 4%, while others like Huichuan Technology and iFlytek experienced minor declines [3][4]. U.S. Robotics Policy Developments - The U.S. is shifting focus towards robotics, planning to release an executive order on robotics technology next year, following a five-month acceleration of AI development plans [5][7]. - The U.S. Department of Commerce is actively meeting with robotics CEOs, and a national robotics committee is being proposed, indicating a strong governmental push towards the robotics sector [7]. Impact on Robotics Industry - The entire robotics supply chain is expected to benefit from increased competition and policy support, enhancing the industry's maturity and technological capabilities [8][9]. - Key areas poised for growth include core components, complete machine manufacturers, and application scenarios, with a focus on cost reduction and market expansion [9][10]. Broader Industry Opportunities - The high-end manufacturing sector is anticipated to improve due to advancements in robotics, potentially increasing competitiveness against foreign high-end manufacturing [10]. - The AI and technology supply chains, including algorithms, chips, and sensors, are also expected to see benefits from the growth of the robotics industry [11]. - Long-term, robotics is projected to enhance productivity across various sectors, including daily use, defense, and elder care, indicating a broad demand for robotic solutions [12].
AI芯片板块领跌,下跌1.56%
Di Yi Cai Jing· 2025-12-05 03:45
AI芯片板块领跌,下跌1.56%,其中景嘉微下跌3.4%,寒武纪下跌3.36%,海光信息下跌3.34%,国科 微、云天励飞、瑞芯微跌超2%。(AI生成) AI芯片板块领跌,下跌1.56%,其中景嘉微下跌3.4%,寒武纪下跌3.36%,海光信息下跌3.34%,国科 微、云天励飞、瑞芯微跌超2%。(AI生成) ...
云天励飞董事长陈宁:以GPNPU架构推动算力效率大幅提升
Zhong Zheng Wang· 2025-12-04 10:37
中证报中证网讯(记者齐金钊)日前,在2025GIS全球创新峰会上,云天励飞董事长兼CEO陈宁与"AI教 父"杰弗里.辛顿亮相峰会对话环节,围绕算力效率、AI向善与普惠未来等话题进行了深度对话。双方共 同认为,AI的未来,不再只是"更聪明"的竞赛,而是"更高效、更安全、更普惠"的系统性竞争。陈宁表 示,云天励飞将推出通用神经网络处理器架构,推动AI生成的成本和效率大幅提升。 陈宁介绍,云天励飞已向国际相关机构提出建议,希望推动建立统一的AI处理芯片与推理网络标准, 让不同国家和地区都能在同一张互联互通的推理网络上共享能力,尤其在医疗与教育等关乎民生的领域 真正实现"AI for All"。从"更聪明"到"更高效",从"能不能做到"到"能不能让更多人用得起、用得好"。 陈宁认为,GPU(图形处理器)在深度学习早期扮演了重要角色,但本质仍是通用计算架构,并非为神经 网络量身定制。 结合产业发展现状,陈宁预判,到2030年,全球AI芯片产业规模有望达到约5万亿美元,其中训练芯片 约占1万亿美元,而面向终端与行业侧的推理/处理芯片有望达到4万亿美元,占比约80%。随着智能体 能力持续下沉,AI处理芯片将被广泛嵌入眼镜、 ...
诺奖得主杰弗里·辛顿对谈云天励飞董事长陈宁 AI训练成本或下降99%
Shen Zhen Shang Bao· 2025-12-03 23:06
此次峰会上,辛顿阐述了AI系统强大的学习效率,并再次强调训练"向善"AI的重要性。"我们正在建立 非常庞大的AI系统,AI系统之间的'蒸馏效率'要高得多,换句话说AI大模型是可以很快将全网信息进行 吸收,这样的知识'蒸馏'与分享真的非常高效,比人与人之间的信息传递、代际传递效率提升好几十亿 倍。" 深圳商报首席记者 陈小慧 2025年,AI正在从大模型算法走向落地应用阶段。未来有哪些技术趋势值得关注?如何训练"向善"的 AI?近日,一场全球巅峰对话给出了最新答案。 12月2日,在以"智汇全球·绿动未来"为主题的2025GIS全球创新展暨全球创新峰会上,2024年诺贝尔物 理学奖获得者、"AI教父"、2018年图灵奖得主杰弗里·辛顿,硅谷著名计算机科学家、《浪潮之巅》作 者吴军以及深圳云天励飞董事长兼CEO陈宁,围绕AI如何改变人类世界、AI安全治理、推理芯片技术 突破等议题展开了一场深度对谈。 在长达约1个小时的对话中,辛顿再次强调了对AI安全治理的重要性,称AI学习效率和知识传递速度比 人类提升了好几十亿倍。"AI要朝着正确、向善的方向发展",成为了这场对话的共识。 AI要朝着正确、向善的方向发展 在陈宁看 ...
更聪明的AI还是更高效的AI?“AI教父”辛顿对话云天励飞陈宁
围绕这一判断,云天励飞以NPU为核心,将推出GPNPU架构,走"推理优先架构"路线,在矩阵/向量单 元、存储层级和带宽利用上深度优化,目标是将100万个token的生成成本,从约1美元压到1美分,实现 百倍级效率提升。 在大模型步入深水区的当下,AI的下一个临界点究竟在哪里?在2025 GIS全球创新峰会现场,深度学习 奠基人、"AI教父"杰弗里·辛顿(Geoffrey Hinton)与云天励飞董事长兼CEO陈宁,围绕算力效率、AI向 善与普惠未来展开了一场高密度对话。 在这一点上,辛顿从新型计算范式的角度强调能效约束,陈宁从专用芯片与架构创新的角度回应同一问 题,形成了对"算力效率将成为下一阶段关键瓶颈"的共同判断。 一位代表全球人工智能基础理论的最前沿,一位深耕专用算力与产业落地,却在关键方向上形成高度共 识:AI的未来,不再只是"更聪明"的竞赛,而是"更高效、更安全、更普惠"的系统性竞争。 AI向善,既要可控也要可负担 AI瓶颈正从"算法"转向"算力效率" 在算力成本急剧攀升的今天,AI的真正瓶颈在哪里? 辛顿认为,现有计算体系在能耗和效率上面临越来越大的压力,未来需要在新的计算形态上进行更多探 索。他 ...
AI“向善”、训练成本、推理芯片……“AI教父”辛顿对话云天励飞董事长陈宁
Sou Hu Cai Jing· 2025-12-03 10:43
Core Insights - The dialogue emphasized the importance of AI safety governance and the need for AI to develop in a "good" direction, as highlighted by Jeffrey Hinton, a prominent figure in AI research [5][6][8] - The transition from AI training to application reasoning is expected to occur by 2025, with a significant focus on reducing AI training costs and improving efficiency [7][14] Group 1: AI Safety and Governance - Jeffrey Hinton reiterated the necessity of ensuring AI develops safely and beneficially for humanity, stating that AI's learning efficiency surpasses human capabilities by billions of times [5][6] - The consensus among experts is that while AI development cannot be halted, measures must be taken to ensure its safety and ethical use [5][6] Group 2: Cost Reduction in AI Training - The current cost of training large AI models can reach billions of dollars, and there is a strong push to reduce this cost significantly, aiming to lower it from $1 to just $0.01 per token [8][14] - Chen Ning emphasized that making AI affordable and accessible to a broader population is crucial for its meaningful application in various sectors, including education and healthcare [6][8] Group 3: Future of AI Chips - The industry is transitioning from training chips to reasoning chips, with predictions that the market for reasoning chips could reach $4 trillion by 2030, surpassing the $1 trillion market for training chips [14] - Chen Ning highlighted the potential for AI to redefine digital applications and consumer electronics, suggesting that AI processing chips could become as ubiquitous as utilities like water and electricity [14]
云天励飞陈宁对话Hinton:推理时代来临 GPNPU架构如何破局?
Zheng Quan Ri Bao· 2025-12-03 06:41
Core Insights - The dialogue at the 2025 GIS Global Innovation Summit highlighted the need for advancements in AI computing efficiency and the importance of making AI accessible to a broader audience [2][4] AI Chip Market Outlook - The global AI chip industry is projected to reach approximately $5 trillion by 2030, with training chips accounting for about $1 trillion and inference/processing chips expected to reach $4 trillion, representing around 80% of the market [3] - AI processing chips are anticipated to be widely integrated into various devices such as glasses, headphones, smartphones, laptops, home appliances, and enterprise equipment, becoming as ubiquitous as utilities like water and electricity [3] AI Research and Ethical Considerations - Geoffrey Hinton emphasized the real risks associated with AI and the need for proactive measures to address these risks [4] - Chen Ning stressed that meaningful AI must be affordable and accessible to a larger population, not just a select few, to truly be considered beneficial [4] GPNPU Architecture Innovation - The company is set to launch the GPNPU (General-Purpose Neural Processing Unit) architecture, focusing on optimizing matrix/vector units, storage hierarchy, and bandwidth utilization to achieve a hundredfold increase in inference efficiency [5] - The trend of "inference heterogeneity" is emerging, requiring chip architectures to flexibly allocate computing power, bandwidth, and storage [6] Competitive Advantages and Industry Positioning - The company has been involved in parallel computing instruction set and chip architecture design since 2005, giving it a foundational advantage in algorithm chip optimization [7] - The company has established strong customer relationships and possesses capital and brand advantages, enabling it to attract global talent [7] - The Guangdong-Hong Kong-Macau Greater Bay Area offers a comprehensive AI and mechatronics industry chain, allowing the company to quickly respond to market changes and drive chip development based on demand [7]