LPDDR内存
Search documents
英伟达换内存,供应链炸了!
半导体芯闻· 2025-11-20 10:49
如果您希望可以时常见面,欢迎标星收藏哦~ 来 源 : 内容 编译自 wccftech ,谢谢 。 随着人工智能需求激增,搭载 LPDDR 内存的英伟达 GB200 平台将进一步给 DRAM(动态随机 存取存储器)领域带来压力。 过去几个月,行业见证了 DRAM 需求的爆发式增长,内存模块已进入 "短缺时代"。起初,考虑 到 DRAM 产能正处于扩张阶段,市场预计影响不会太大,但数据中心建设显然已达到新的规模。 这 促 使 英 伟 达 等 厂 商 做 出 重 大 决 策 , 其 中 之 一 便 是 为 AI 服 务 器 采 用 LPDDR 内 存 。 根 据 Counterpoint Research披露的信息,这一举措将引发 "结构性巨变"。 "即将到来的更大风险集中在高端内存领域 —— 英伟达近期转向 LPDDR 内存,意味着它将成为 规模堪比大型智能手机厂商的内存采购方。这对供应链而言是一次结构性巨变,如此庞大的需求难 以被轻易消化。"——Counterpoint Research 不过需要说明的是,与 Counterpoint 的报告表述不同,英伟达转向 LPDDR5 内存并非近期之 举。早在 18 个 ...
CounterPoint:全球内存价格年内涨幅达50%,2026年或再涨50%
Huan Qiu Wang Zi Xun· 2025-11-20 04:25
来源:环球网 报告指出,芯片巨头英伟达的战略转型带来了更广泛的长期影响。传统服务器普遍采用具备错误纠正码 (ECC)功能的DDR内存以保障数据可靠性,而英伟达为降低功耗,正转向在服务器产品中大规模采 用LPDDR内存,并计划通过CPU层面处理错误纠正。研究总监MS Hwang表示,这一转变使英伟达的内 存需求规模堪比大型智能手机制造商,对现有供应链构成"地震级"变革,短期内难以消化。 【环球网科技综合报道】11月20日消息,市场调查机构CounterPoint Research近日发布报告显示,全球 内存市场正遭遇显著价格上涨压力。继今年价格已飙升50%后,动态随机存取存储器(DRAM)价格预 计将持续上涨,2025年第四季度可能再涨30%,2026年初进一步上涨20%,至2026年第二季度,累计涨 幅或达50%。 此次内存市场波动将广泛波及消费电子生态系统。高级分析师Ivan Lam介绍,最初冲击将集中在采用 LPDDR4的低端智能手机制造商,后续影响将逐步蔓延。报告预测,中高端智能手机的物料清单 (BoM)成本可能增加超过25%,既可能侵蚀制造商利润空间,也可能迫使企业上调产品售价,给行业 发展带来不确定 ...
高通上“芯”,A股“伙伴”振奋
Shang Hai Zheng Quan Bao· 2025-10-29 15:26
当地时间10月27日,高通推出面向数据中心的下一代AI推理优化解决方案——基于高通AI200和AI250芯片的加速卡及整机柜产品,并预计于2026年和 2027年分别实现商用化。 有分析人士表示,此次高通推出机架级解决方案,或标志着公司业务正从销售芯片拓展至提供数据中心系统,这一举措与英伟达和AMD的发展路径相一 致,并使公司在数据中心市场与英伟达和AMD展开竞争。 记者注意到,多家A股上市公司在存储等领域与高通存在紧密联系,或将受益于高通进军数据中心解决方案市场。 高通推出机架级解决方案 具体来看,高通AI200是一款专为机架级AI推理打造的解决方案,旨在降低总体拥有成本(TCO),并针对大语言模型及多模态大模型(LLM、LMM) 推理和其他AI工作负载实现性能最优化。每张加速卡支持高达768 GB的LPDDR内存,不仅显著提升了内存容量,还有效降低了成本,从而为AI推理带来 扩展性和灵活性。 高通表示,两款机架级解决方案均配备直液冷散热系统,整机柜的功率消耗控制在160千瓦,充分满足大规模部署的需求。 "通过高通AI200和AI250,我们正重新定义机架级AI推理的无限可能。这些全新AI基础设施解决方案, ...
存储巨头,纷纷投靠台积电
半导体芯闻· 2025-09-24 10:47
Core Viewpoint - Micron Technology, as the largest computer memory chip manufacturer in the U.S., has provided an optimistic quarterly performance outlook driven by demand for artificial intelligence devices, indicating a significant role in AI investments [1][4]. Group 1: Financial Performance - For the first quarter of the fiscal year, Micron expects revenue of approximately $12.5 billion, exceeding analysts' average estimate of $11.9 billion [1]. - The projected earnings per share (EPS) is around $3.75, higher than the market's previous estimate of $3.05 [1]. - In the fourth quarter of the fiscal year, Micron reported a 46% year-over-year revenue increase, reaching $11.3 billion, surpassing market expectations of $11.2 billion [3]. Group 2: Product Development - Micron is making progress with its HBM4 12-Hi DRAM solution, which offers over 11 Gbps pin speed and 2.8 TB/s bandwidth, claiming it will outperform competitors in performance and efficiency [1]. - The company plans to collaborate with TSMC to produce the next-generation HBM4E memory, expected to launch in 2027 [2]. - Micron is also focusing on LPDDR memory for data centers, becoming the sole supplier of LPDDR DRAM in this sector, and is working on GDDR7 memory with expected pin speeds exceeding 40 Gbps, a 25% increase from the initially announced 32 Gbps [2]. Group 3: Market Dynamics - Micron anticipates that the supply tightness of memory chips will continue into next year due to growing demand from data center equipment and AI-related businesses [4]. - The company plans to increase capital expenditures to meet market demand, with investments in facilities and equipment reaching $13.8 billion in fiscal year 2025 [4]. - Micron's CEO highlighted the unique advantage of being the only U.S.-based memory manufacturer in capturing AI opportunities, with data center business reaching historical highs [3]. Group 4: Competitive Landscape - Micron has narrowed the gap with market leader Samsung in the HBM sector, launching products closely aligned with NVIDIA's AI processors [5]. - Analysts have expressed optimism about Micron's growth potential in the data center market, leading to significant stock price increases [5].
人工智能,需要怎样的DRAM?
半导体行业观察· 2025-06-13 00:40
Core Viewpoint - The article discusses the critical role of different types of DRAM in meeting the growing computational demands of artificial intelligence (AI), emphasizing the importance of memory bandwidth and access methods in system performance [1][4][10]. DRAM Types and Characteristics - Synchronous DRAM (SDRAM) is categorized into four types: DDR, LPDDR, GDDR, and HBM, each with distinct purposes and advantages [1][4]. - DDR memory is optimized for complex operations and is the most versatile architecture, featuring low latency and moderate bandwidth [1]. - Low Power DDR (LPDDR) includes features to reduce power consumption while maintaining performance, such as lower voltage and temperature compensation [2][3]. - GDDR is designed for graphics processing with higher bandwidth than DDR but higher latency [4][6]. - High Bandwidth Memory (HBM) provides extremely high bandwidth necessary for data-intensive computations, making it ideal for data centers [4][7]. Market Dynamics and Trends - HBM is primarily used in data centers due to its high cost and energy consumption, limiting its application in cost-sensitive edge devices [7][8]. - The trend is shifting towards hybrid memory solutions, combining HBM with LPDDR or GDDR to balance performance and cost [8][9]. - LPDDR is gaining traction in various systems, especially in battery-powered devices, due to its excellent bandwidth-to-power ratio [14][15]. - GDDR is less common in AI systems, often overlooked despite its high throughput, as it does not meet specific system requirements [16]. Future Developments - LPDDR6 is expected to launch soon, promising improvements in clock speed and error correction capabilities [18]. - HBM4 is anticipated to double the bandwidth and channel count compared to HBM3, with a release expected in 2026 [19]. - The development of custom HBM solutions is emerging, allowing bulk buyers to collaborate with manufacturers for optimized performance [8]. System Design Considerations - Ensuring high-quality access signals is crucial for system performance, as different suppliers may offer varying speeds for the same DRAM type [22]. - System designers must carefully select the appropriate memory type to meet specific performance needs while considering cost and power constraints [22].