Workflow
NVL72系统
icon
Search documents
英伟达50亿美元入股英特尔
Hu Xiu· 2025-09-19 00:12
当地时间周四,英伟达首席执行官黄仁勋表示,公司对竞争对手英特尔的50亿美元投资及技术合作,是 两家公司近一年来持续沟通的成果。 黄仁勋透露,他曾亲自与英特尔首席执行官陈立武就合作进行交流,称后者是他"多年的老朋友"。在两 家公司宣布英伟达将与英特尔共同开发数据中心及PC芯片的投资协议后,陈立武也表示,他与黄仁勋 相识已有30年。 黄仁勋在记者电话会上直言:"我们认为这将是一笔不可思议的投资。" 根据协议,英伟达将与英特尔合作开发面向数据中心的人工智能系统,结合英特尔基于x86架构的CPU 与英伟达的GPU和网络技术。此外,英特尔还将销售内置英伟达GPU的PC和笔记本产品。 长期以来,PC或服务器中最重要的部件一直是CPU,而英特尔主导了该市场。但如今的AI基础设施往 往需要每一颗CPU搭配两颗或更多英伟达GPU。 本文来自微信公众号:科创板日报,作者:牛占林,原文标题:《黄仁勋:50亿美元入股英特尔是一笔 不可思议的投资》,题图来自:视觉中国(黄仁勋) 英伟达还将把GPU技术注入英特尔的PC和笔记本芯片产品中。黄仁勋表示,这是一个尚未被充分开发 的市场,两者合作所涉及的目标市场总规模高达500亿美元。 黄仁勋 ...
英伟达入股英特尔,黄仁勋表态
财联社· 2025-09-18 23:44
以下文章来源于科创板日报 ,作者牛占林 黄仁勋在记者电话会上直言:"我们认为这将是一笔不可思议的投资。" 根据协议,英伟达将与英特尔合作开发面向数据中心的人工智能系统,结合英特尔基于x86架构的CPU与英伟达的GPU和网络技术。此外, 英特尔还将销售内置英伟达GPU的PC和笔记本产品。 长期以来,PC或服务器中最重要的部件一直是CPU,而英特尔主导了该市场。但如今的AI基础设施往往需要每一颗CPU搭配两颗或更多英 伟达GPU。 微软使用的英伟达NVL72系统搭载的是Arm架构CPU,而非英特尔x86架构CPU。黄仁勋在电话会上表示,未来英伟达将在其NVLink机柜 中支持英特尔的CPU。 他声称:"我们将从英特尔采购CPU,把它们连接到超级芯片中,形成计算节点,再整合到机柜级AI超级计算机中。" 科创板日报 . 科创板第一媒体平台,聚焦科创板及新兴产业发展,专业、权威。 当地时间周四,英伟达首席执行官黄仁勋表示, 公司对竞争对手英特尔的50亿美元投资及技术合作,是两家公司近一年来持续沟通的成 果。 黄仁勋透露,他曾亲自与英特尔首席执行官陈立武就合作进行交流,称后者是他"多年的老朋友"。在两家公司宣布英伟达将与 ...
大和证券:OpenAI联手甲骨文扩建数据中心将利好富士康
news flash· 2025-07-23 03:44
金十数据7月23日讯,大和证券分析师在研报中指出,OpenAI与甲骨文(ORCL.N)的数据中心扩建计划 将为富士康科技集团带来利好。据悉,两家企业将在美国新增开发4.5吉瓦的"星际之门"数据中心产 能,该项目预计需搭载超200万枚芯片,相当于2.8万套英伟达(NVDA.O)NVL72系统。分析师补充 称:"我们认为这将成为英伟达供应链厂商的短期利好催化剂",富士康等供应商将受益。大和证券预 计,NVL72系统出货量将从2025年的2.1万套跃升至2026年的超5万套。 大和证券:OpenAI联手甲骨文扩建数据中心将利好富士康 ...
全景解读强化学习如何重塑 2025-AI | Jinqiu Select
锦秋集· 2025-06-09 15:22
Core Insights - The article discusses the transformative impact of reinforcement learning (RL) on the AI industry, highlighting its role in advancing AI capabilities towards artificial general intelligence (AGI) [3][4][9]. Group 1: Reinforcement Learning Advancements - Reinforcement learning is reshaping the AI landscape by shifting hardware demands from centralized pre-training architectures to distributed inference-intensive architectures [3]. - The emergence of recursive self-improvement allows models to participate in training the next generation of models, optimizing compilers, improving kernel engineering, and adjusting hyperparameters [2][4]. - The performance metrics of models, such as those measured by SWE-Bench, indicate that models are becoming more efficient and cost-effective while improving performance [5][6]. Group 2: Model Development and Future Directions - OpenAI's upcoming o4 model will be built on the more efficient GPT-4.1, marking a strategic shift towards optimizing reasoning efficiency rather than merely pursuing raw intelligence [4][108]. - The o5 and future plans aim to leverage sparse expert mixture architectures and continuous algorithm breakthroughs to advance model capabilities intelligently [4]. - The article emphasizes the importance of high-quality data as a new competitive advantage in the scaling of RL, enabling companies to build unique advantages without massive budgets for synthetic data [54][55]. Group 3: Challenges and Opportunities in RL - Despite strong progress, scaling RL computation faces new bottlenecks and challenges across the infrastructure stack, necessitating significant investment [9][10]. - The complexity of defining reward functions in non-verifiable domains poses challenges, but successful applications have been demonstrated, particularly in areas like writing and strategy formulation [24][28]. - The introduction of evaluation standards and the use of LLMs as evaluators can enhance the effectiveness of RL in non-verifiable tasks [29][32]. Group 4: Infrastructure and Environment Design - The design of robust environments for RL is critical, as misconfigured environments can lead to misunderstandings of tasks and unintended behaviors [36][38]. - The need for environments that can provide rapid feedback and accurately simulate real-world scenarios is emphasized, as these factors are crucial for effective RL training [39][62]. - Investment in environment computing is seen as a new frontier, with potential for creating highly realistic environments that can significantly enhance RL performance [62][64]. Group 5: The Future of AI Models - The article predicts that the integration of RL will lead to a new model iteration update paradigm, allowing for continuous improvement post-release [81][82]. - Recursive self-improvement is becoming a reality, with models participating in the training and coding of subsequent generations, enhancing overall efficiency [84][88]. - The article concludes with a focus on OpenAI's future strategies, including the development of models that balance strong foundational capabilities with practical RL applications [107][108].
财报前夕奥本海默重申英伟达(NVDA.US)、博通(AVGO.US)为半导体板块首选 关税有望促进企业提前采购
智通财经网· 2025-04-16 02:10
尽管半导体(多数品类)目前豁免于特朗普政府的关税政策,但市场传言针对特定行业的关税措施仍在酝 酿,这可能带来负面影响。 "我们看到与关税相关的价格上涨,对PC/智能手机等消费电子产品的终端需求影响最为显著,"Schafer 补充道。 鉴于近期市场波动,Schafer下调了亚德诺半导体(ADI.US)、迈威尔科技、Monolithic Power、恩智浦半 导体(NXPI.US)和维易科仪器(VECO.US)的目标价,以"反映估值倍数的压缩"。 在财报季来临前夕,投行奥本海默重申将英伟达(NVDA.US)、博通(AVGO.US)、迈威尔科技 (MRVL.US)和Monolithic Power Systems(MPWR.US)列为半导体板块的首选推荐。 分析师Rick Schafer在致客户报告中写道,"在纷乱的宏观环境和关税背景下,我们认为人工智能是最优 且最安全的增长方向,""多数企业可能因关税引发的提前采购而实现超预期业绩。我们预计管理层展望 将受到贸易战不确定性和普遍可见性缺失的影响而趋于保守。至少在短期内,我们看到人工智能相关支 出受到的直接影响有限。" 深入分析显示,Schafer预计尽管本季度开局 ...