ZENAVA
Search documents
为什么传统Chatbot搞不定售后,天润云(02167.HK)ZENAVA却能接走一半咨询?
Ge Long Hui· 2025-12-23 14:31
很多做售后的负责人,心里其实都清楚一件事:关键的售后服务,还是只能靠人。 尤其是在技术特征强的行业,用户来咨询的往往不是标准问题,而是"现在这个情况怎么办",是可以继续用还是必须停下来?会不会有安全风险?要不要立 刻去维修? 这些问题,离不开具体场景,也离不开经验判断。也正是因为这个原因,让传统Chatbot很难在售后环节真正派上用场。 原因很简单,传统Chatbot只能根据关键词进行资料检索,消费者可能需要反复尝试才能获得想要的信息,而售后场景本身又不适合折腾,用户往往带着焦 虑甚至情绪,效率低、答非所问,只会让体验进一步变差。 久而久之,机器人被放在一边,人工客服继续兜底,企业的服务成本和压力随着业务增长年年叠加。 国内一家头部摩托车品牌就长期面临这样的问题。直到与天润融通合作,引入ZENAVA重构售后服务流程后,机器人才真正开始"顶上来"——上线以来, ZENAVA平均有效会话拦截率稳定在65%,整体进线拦截率达到50%,在不牺牲体验的前提下,AI接走了一半的工作,显著缓解了人工压力,也降低了售 后成本。 具体来看这家企业的售后服务情况。 在ZENAVA上线前,该企业的售后咨询完全依赖人工座席接待模式。 ...
咨询量一上来就崩盘?天润云(02167.HK)以AI破局加盟行业“前端增长瓶颈”
Ge Long Hui· 2025-12-11 22:21
在AI正在重塑各行各业的当下,加盟行业的前端咨询方式却几乎没有改变——仍主要依赖人工客服完成接待、答疑和信息确认。对于管理者而言,这意味 着一件极其危险的事:行业的增长逻辑已变,但企业的运营方式没变。 加盟行业的投放成本在上涨,线索获取越来越贵,而咨询入口依旧由人力承载——可扩展性有限、成本结构刚性、效率提升空间逐年缩小。当越来越多品牌 开始思考如何用 AI 重塑销售与客服时,前端咨询若仍停留在人工模式,就等同于在企业增长链路的第一环节失去竞争力。 管理层必须面对一个现实:未来的竞争,不再是谁投入更多人力,而是谁拥有更智能、更可规模化的前端能力。 ZENAVA 正是基于这一趋势而来——帮助企业完成从人力驱动到 AI 驱动的转变,让加盟咨询的第一步就具备效率优势与成本优势。 在多数连锁品牌中,加盟咨询的第一道接待仍由人工客服承担。表面上,这份工作并不复杂,但在如今多渠道、高频咨询的环境下,实际上已经成为一个高 压力、高复杂度的岗位。 首先,咨询量大幅增长。网络发达如今天,客户不再只通过400 电话或官网表单来咨询,还会从公众号、小程序、抖音/快手广告、小红书、第三方加盟平 台等各种渠道涌入。渠道越多,咨询越分散 ...
人海战术打不住的软件售后,没想到被一个天润融通AI轻松接管
Ge Long Hui· 2025-12-06 22:19
在软件行业,服务中这样的场景大家肯定不陌生: 客户账号新开通,各种"不会配置""用不明白"的咨询就开始进线;稍微涉及点技术问题,客服就升级给二线、三线;技术团队每天都在回答重复问题,却抽 不出时间处理真正重要的任务。工单越积越多、团队越招越大,但效率却始终上不去。 这一切不是人的问题,而是传统"人力驱动"的售后模式已经无法承载越来越复杂的服务体系。 在这样的背景下,ZENAVA 正在帮助软件企业完成一场真正的转变——从"人力驱动"迈向"AI 驱动",让常规咨询、流程指引和基础技术排查实现自动化, 让技术与客服团队重新把时间花在高价值任务上。 软件企业的售后服务,难点不在于"回答问题",而在于同时承载用户上手指导、技术集成咨询、故障排查与交付保障等多重任务。 比如新客户不会配置、使用过程中频繁卡住、技术问题难以描述,就是售后最常见的挑战;除此之外,大量接口参数、系统集成、权限设置等技术咨询以及 初步故障排查,也超出了传统客服的处理能力,稍微涉及技术的问题就需要不断升级。结果就是工单堆积、链路拉长、少量专家承受过大的重复性负担。 这些因素叠加,就形成了典型的"三层客服结构性矛盾": ①一线客服业务熟但技术不足; ...
从客服到“数字员工”:天润云(02167.HK)AI如何接管连锁门店的后台运营
Ge Long Hui· 2025-11-28 14:15
如何高效地运作、管理、支撑这些门店,已成为连锁品牌的核心挑战。 凭借高效率与标准化运营,连锁便利店已成为零售市场增长最快的业态。但当规模扩张至上千家门店,规模效应也同样伴随复杂的管理与支持挑战。 对于连锁品牌而言,总部不仅承担商品供应、它还需要为门店提供报损、调拨、营销、会员、物流等多维度支持。全国数百、上千家门店每天的咨询与请 求,形成了巨大的运营流量。 然而,传统依赖人工的中台模式正陷入结构性困境:支持量激增、人力成本高企、响应速度下降。连锁品牌面临要么扩编客服、承受高成本,要么牺牲效率 与门店体验的两难选择。 但AI的进化正在打破这一平衡。特别是以ZENAVA为代表的新一代智能体,不再只是"回答问题"的机器人,而能真正理解业务、执行操作、完成闭环。 它让过去依赖人工客服完成的任务,如今由AI自主承接——让连锁便利店的服务中台,从"人力支撑"迈向"AI驱动",开启全新的运营方式。 过去,连锁便利店的运营一直依靠庞大的人工中台。 客服、运营、供应链等部门协作,构成总部面向门店的"服务网络"。过去几年,这一模式确实支撑了企业的快速扩张,但当门店数量迈入千店后,隐患集中 爆发。 首先是成本失控。 总部的支持需求 ...
天润云(02167.HK)客户联络,如何成为企业AI转型的“黄金切入口”?
Ge Long Hui· 2025-10-16 05:41
在AI浪潮席卷各行各业的当下,几乎所有企业管理者都已经意识到:AI将是未来竞争的关键。 几乎所有人都在思考,如何才能尽快推动企业从传统的"人力驱动"转型为"AI驱动",抓住"人口红利"到"AI红利"的历史机遇。 然而,真正落到实践层面,问题却变得复杂:企业的业务庞杂、流程繁多,转型远不是一句口号。许多管理者虽然知道"AI转型迫在眉睫",但具体该如何 转?从哪里先下手?往往陷入困境,一筹莫展。 因此,对于许多企业而言,当下最核心的问题不是"要不要用AI",能否找到那个能同时满足「价值确定性」和「场景适配性」的最佳战略支点。 在众多业务环节中,客户联络正是那个可立即点燃价值飞轮的起点:数据天然在线、流程高度标准化、结果可清晰量化。它不仅能让AI价值迅速可见,更 能成为企业全局转型的战略支点。 为什么说客户联络是企业AI转型的最佳起点? 原因很简单:它既直通企业核心价值,又具备天然的AI适配条件,还能快速消除转型焦虑。 首先,客户联络是最接近现金流的环节。无论是售前咨询、销售转化,还是售后服务与客户留存,每一次对话都直接关系到收入和口碑。AI在这里落地, 价值转化是立竿见影的:转化率提升、获客成本下降、客户体验改善 ...
价格战拼到尽头,天润云(02167.HK)ZENAVA才是家电品牌的增长新引擎
Ge Long Hui· 2025-10-16 05:41
Core Insights - The competition in the 3C home appliance market has intensified, with minimal differences in product performance and extreme price wars, leading consumers to take a more proactive approach in their purchasing decisions [1][2] - The shift in competition has moved from traditional advertising to engaging in meaningful dialogues with consumers, emphasizing the importance of pre-sales service in converting potential buyers [2][3] Consumer Behavior Changes - Consumers are now more knowledgeable and perform extensive research before making a purchase, often completing 80% of their decision-making process online through reviews, comparisons, and social media [1][2] - The nature of consumer inquiries has evolved from basic questions to more detailed and specific ones, reflecting their increased expertise and personalized needs [3][5] Service Expectations - Brands must adapt to the new consumer expectations by providing personalized and professional pre-sales service, moving beyond simple FAQ responses to more engaging and informative interactions [5][10] - The demand for a "scene expert" who can understand and design tailored solutions for consumers is rising, highlighting the need for emotional connection and trust in the purchasing process [5][12] ZENAVA's Role - ZENAVA is positioned as an AI pre-sales consultant that understands products, users, and scenarios, offering a more interactive and personalized service experience [6][12] - It utilizes a private knowledge base and advanced AI capabilities to provide comprehensive responses and recommendations based on user profiles and preferences [6][7] Service Transformation - The introduction of ZENAVA signifies a shift from traditional customer service to a more consultative sales approach, focusing on understanding, planning, and guiding consumer decisions [10][11] - This transformation allows companies to enhance service efficiency, reduce costs associated with customer inquiries, and improve overall customer experience [11][12]
拦截、判断、执行一步到位:天润云(02167.HK)ZENAVA正接手商品退换货服务
Ge Long Hui· 2025-10-14 13:40
Core Insights - The article discusses the challenges of traditional return and exchange processes in customer service, highlighting the reliance on human intervention and the inefficiencies that arise from it. The introduction of ZENAVA, an AI-driven productivity platform, aims to transform this landscape by automating and streamlining the return and exchange process, thereby enhancing customer experience and operational efficiency. Group 1: Challenges in Traditional Return and Exchange Processes - The return and exchange process is heavily reliant on human intervention, with over 90% of users requesting human assistance when faced with these issues [1] - Traditional customer service systems struggle with complex return scenarios, leading to poor service experiences and inefficiencies during peak times [3][4] - A significant increase in return inquiries, such as a 300% surge during promotional events, places immense pressure on human customer service representatives [3] Group 2: ZENAVA's Innovative Solutions - ZENAVA is designed to handle the entire return and exchange process, from understanding customer intent to completing the transaction, effectively acting as an AI employee [1][3] - The platform features advanced intent recognition capabilities, allowing it to understand vague customer expressions and initiate appropriate processes [4] - ZENAVA supports image recognition, enabling customers to upload photos of products, which enhances the accuracy of return assessments [7] Group 3: Automation and Efficiency - The ZENAVA agent automates the return process, proactively guiding customers through various steps without waiting for user prompts, thus improving service efficiency [7][9] - The system can handle complex scenarios, such as late return requests, by clearly explaining platform rules and addressing customer emotions [9] - By automating standard processes, ZENAVA allows human employees to focus on strategic and complex decision-making, significantly improving service efficiency and organizational resilience [9]
从人口红利到AI红利, 天润云(02167.HK)助力企业转型刻不容缓
Ge Long Hui· 2025-10-14 13:40
Core Insights - AI is fundamentally reshaping the operational logic of businesses, transitioning from a human-centric model to an AI-driven approach [1][2][3] - Companies that have embraced AI early are experiencing significant improvements in customer service, marketing conversion, and operational efficiency [2][6] Group 1: Challenges of Human-Driven Models - Traditional human-driven organizational structures are increasingly revealing issues such as high costs, low efficiency, and slow response times [2][3] - In customer service, reliance on large teams leads to inefficiencies, with management layers and communication chains causing delays and reduced customer satisfaction [3][5] - The marketing sector faces similar challenges, where human-driven sales processes result in uneven lead distribution and low conversion rates, hindering growth [5] Group 2: Advantages of AI Employees - AI employees can autonomously handle over 80% of standardized customer service inquiries, allowing human agents to focus on complex issues, thus improving response times significantly [6][11] - In marketing, AI employees can independently engage customers, recommend solutions based on historical data, and efficiently manage leads, directly impacting revenue growth [6][8] Group 3: Organizational Transformation - Transitioning to an AI-driven model requires a complete restructuring of business processes, such as simplifying customer service hierarchies from three layers to two, enhancing efficiency [11][12] - The organizational structure shifts from "human managing humans" to "human managing AI," leading to a reduction in team sizes and a flatter organizational hierarchy [12][14] - Functional departments must also adapt, with traditional training roles evolving into knowledge management teams that focus on structuring information for AI utilization [14][15] Group 4: Strategic Imperative - The shift from human-driven to AI-driven operations is not merely an upgrade but a necessary strategic transformation for companies to remain competitive [8][15] - Future competition will hinge on the effectiveness of AI as a productivity engine rather than the number of human employees [15]