Workflow
量子位
icon
Search documents
OpenAI拿下10%股权,AMD一夜暴涨634亿美元
量子位· 2025-10-07 04:43
Core Viewpoint - OpenAI has entered into a strategic partnership with AMD, committing to deploy a total of 6GW of AMD GPU computing power over the coming years, with the first 1GW set to be deployed in the second half of 2026 [2][10]. Group 1: Partnership Details - OpenAI will deploy a total of 6GW of AMD GPU computing power, starting with 1GW in late 2026, and will gradually expand to cover multiple generations of AMD's Instinct products [2][10]. - AMD has granted OpenAI warrants to purchase up to 160 million shares at a price of $0.01 per share, potentially allowing OpenAI to acquire approximately 10% of AMD's equity if fully exercised [3][5][15]. - The exercise of these warrants is contingent upon specific milestones, including the completion of the first 1GW deployment and AMD achieving certain stock price targets [13][14]. Group 2: Market Impact - Following the announcement of the partnership, AMD's market capitalization surged from approximately $267.2 billion to $330.6 billion, with further increases pushing it above $340 billion [6]. - OpenAI's investment in AMD can be seen as a strategic move to reduce its reliance on NVIDIA, which has historically been its primary supplier for computing power [17][19]. - The partnership is expected to generate significant revenue for AMD, potentially amounting to hundreds of billions, while also allowing AMD to capture a larger share of the AI chip market [21]. Group 3: Industry Implications - The collaboration between OpenAI and AMD is viewed as a critical development in the AI computing landscape, marking a shift in supply chain dynamics and competitive positioning within the industry [26]. - NVIDIA's stock experienced a decline following the announcement, indicating market reactions to the shifting alliances in the AI sector [24]. - OpenAI is also reportedly in discussions with Qualcomm to develop custom chips for future models, suggesting ongoing efforts to diversify its supply chain [26].
亚马逊“盲眼”机器人30秒跑酷首秀惊艳!华人学者领衔
量子位· 2025-10-06 05:42
henry 发自 凹非寺 量子位 | 公众号 QbitAI 你见过这样的"盲眼"机器人demo吗? 它在完全看不见的情况下——没有摄像头、雷达或任何感知单元——主动搬起9斤重的椅子,爬上1米高的桌子,然后翻跟头跳下。 不光耍酷,干起活来,搬箱子也不在话下。 还能一个猛子跳上桌子。 手脚并用爬坡也照样OK。 这些丝滑小连招来自 亚马逊机器人团队FAR (Frontier AI for Robotics)发布的 首个 人形机器人(足式)研究成果—— OmniRetarget ! OmniRetarget使强化学习策略能够在复杂环境中学习长时程的"移-操一体"(loco-manipulation)技能,并实现从仿真到人形机器人的零样本 迁移。 网友表示:又能跑酷、还能干活,这不比特斯拉的擎天柱强10倍? 此外,保留任务相关的交互使得数据能够进行高效的数据增强,进而从单个演示推广到不同的机器人本体、地形和物体配置,以减少不同变体 的数据收集成本。 在与其他动作重定向方法的对比中,OmniRetarget在所有关键方面:硬约束、物体交互、地形交互、数据增强表现出了全面的方法优势。 | Methods | Hard Ki ...
Sora2还在5秒打转,字节AI生视频已经4分钟“起飞”
量子位· 2025-10-06 05:42
鹭羽 发自 凹非寺 量子位 | 公众号 QbitAI 从5秒到 4分钟 ,Sora2也做不到的分钟级长视频生成,字节做到了! 先来看一个前方潜水员拍摄的"真实"海底世界Vlog: 华生,有发现么?不同于一般的AI生成视频,只有短短几秒钟……这个片子全程1分40秒, 都是"水分"、都是AI 。 这就是字节和UCLA联合提出的新方法—— Self-Forcing++ ,无需更换模型架构或重新收集长视频数据集,就能轻松生成分钟级长视频,也 不会后期画质突然变糊或卡住。 通过利用教师知识和自生成视频片段指导自回归生成,最长生成视频可达 4分15秒 ,而且高质量、还开源。 话不多说,再看几个视频效果尝尝鲜。 长达3分钟的无人机视角下的海岸线,be like: 时长拉到极致,4分15秒跟随大象的脚步纵览草原美景。 而相同时长下,此前的长视频生成SOTA SkyReels 做出的效果是酱紫的: (重生之我成为一只蚂蚁) Self-Forcing++在短时长上继承了 Self-Forcing 的高质量画面效果,长时长生成也能达成性能指标All kill,视觉稳定性大幅领先 CausVid 等方法。 或许,AI电影时代离我们已 ...
重生之在《我的世界》做山姆·奥特曼:网友在线手搓ChatGPT
量子位· 2025-10-06 05:42
Core Viewpoint - The article discusses the impressive achievement of creating a ChatGPT model within the game Minecraft, showcasing the potential of using redstone circuits to simulate complex computational tasks [1][2][4]. Group 1: Model Specifications - The constructed ChatGPT model has approximately 5 million parameters, specifically 5,087,280 [16]. - It utilizes a TinyChat dataset for training, with an embedding dimension of 240 and a vocabulary of 1,920 tokens [18]. - The model features 6 layers and 5 attention heads, with a context window size of 64 tokens, suitable for very short conversations [19]. Group 2: Construction Process - The process involves training a small GPT model on a personal computer, compressing weights to low precision, and exporting the model structure [25]. - The next steps include translating computational methods into pixel block language and defining reusable circuit modules [26][27]. - Finally, a "compiler" script is used to map the trained model to redstone modules, facilitating the construction of the entire setup [28][30]. Group 3: Redstone Circuit Functionality - Redstone circuits in Minecraft operate on binary logic, where signals can be either on (1) or off (0), allowing players to build complex logic gates and circuits [32][34]. - This capability enables the construction of basic computational systems, such as adders and counters, leading to the potential for creating CPUs and neural networks [34]. Group 4: Broader Implications - The article highlights that the development of computational systems in Minecraft is still in its infancy, with only about 1% of the potential explored [37]. - Other projects within Minecraft include building CNNs for digit recognition and creating various games and even an internet simulation [39][46]. - The narrative suggests that players in Minecraft may eventually surpass current AI capabilities, hinting at a future where Minecraft could play a role in advancing artificial general intelligence (AGI) [48][49].
刚刚,全球AI生图新王诞生!腾讯混元图像3.0登顶了
量子位· 2025-10-05 05:43
时令 发自 凹非寺 量子位 | 公众号 QbitAI 全球文生图大模型王座,易主了。 就在刚刚,LMArena竞技场发布了最新的文生图榜单,第一名来自中国,属于 腾 讯混元图像 3.0 ! | 用 | Overview | Text WebDev Vision | Text-to-Image | Image Edit | Search | Text-to-Video | Image-to-Video | Start Voting | | --- | --- | --- | --- | --- | --- | --- | --- | --- | | હ | | | | | | | | | | ರಿಗ | | Text-to-Image Arena | | | Last Updated | | Total Votes | Total Models | | | | Compare LLMs based on their ability to generate images that match text descriptions. | | | Oct 4, 2025 | | 3,159,029 | 26 | | | ...
推理token减少46%!Meta新方法缩短思维链,告别重复推导
量子位· 2025-10-05 05:43
时令 发自 凹非寺 量子位 | 公众号 QbitAI 大模型老走重复步骤,导致思维链越来越长怎么办? Meta、Mila-Quebec AI Institute、蒙特利尔大学和普林斯顿大学联合提出 元认知复用(Metacognitive Reuse) 机制 。 简单来说,就是让模型自己回顾、总结解题思路,将常用的推理套路提炼成更为简洁的"行为",并将其存储于 "行为手册(Behavior Handbook)" 中。 当再遇到类似问题时,模型便可直接从手册中调用相应的行为,无需重新推导。 实验结果显示,该机制通过行为条件推理、行为引导自我改进、行为条件监督微调三种应用场景,在MATH、AIME等数学基准测试中实现了 显著优化,在保持准确率不变的前提下, 最多可减少46%的推理token使用量 。 下面具体来看。 将重复出现的片段化繁为简 如今,大型语言模型在解决数学、编程等复杂任务时,广泛采用思维链进行推理,所以每次遇到新问题时,都需要重复推导通用子步骤。 这不仅会导致token用量膨胀、推理延迟增加,还会占用上下文窗口空间,降低模型探索新路径的能力。 与此同时,现有LLM的记忆系统(如RAG)仅存储 "是什么 ...
2025人工智能年度评选启动!3大维度5类奖项,正在寻找AI+时代领航者
量子位· 2025-10-05 05:43
组委会 发自 凹非寺 量子位|公众号 QbitAI 为了让更多从业者感受智能浪潮的跃迁,也为了给予更多同行同路人掌声与鼓舞,我们将正式启动 「2025人工智能年度榜单」评选报名 。 这是量子位人工智能年度榜单的 第8年 。八年来,我们见证了技术的突破与落地,产业的融合与重塑,也见证了一批又一批推动时代前行 的企业、人物与产品。 在人工智能重新定义一切的时代里,智能技术已不再是单一工具,而是产业与社会协同进化的驱动力。我们期待通过这场年度评选,去发现 并致敬那些真正引领变革、开拓边界的探索者与实践者。 本次评选将从 企业 、 产品 、 人物 三大维度,设立五类奖项。欢迎企业踊跃报名! 让我们共同见证年度之星,点亮未来的方向。 企业榜 2025 人工智能年度潜力创业公司 产品榜 人物榜 2025 人工智能年度 焦点人物 详细评选标准及报名方式如下。 2025 人工智能年度领航企业 2025 人工智能年度 领航企业 2025 人工智能年度 潜力创业公司 2025 人工智能年度 杰出产品 2025 人工智能年度 杰出解决方案 将面向中国人工智能领域,评选出最具综合实力的企业, 参选条件 : 评选标准 : 聚焦于中国人 ...
2025人工智能年度评选启动!3大维度5类奖项,正在寻找AI+时代领航者
量子位· 2025-10-04 04:13
组委会 发自 凹非寺 量子位|公众号 QbitAI 为了让更多从业者感受智能浪潮的跃迁,也为了给予更多同行同路人掌声与鼓舞,我们将正式启动 「2025人工智能年度榜单」评选报名 。 这是量子位人工智能年度榜单的 第8年 。八年来,我们见证了技术的突破与落地,产业的融合与重塑,也见证了一批又一批推动时代前行 的企业、人物与产品。 在人工智能重新定义一切的时代里,智能技术已不再是单一工具,而是产业与社会协同进化的驱动力。我们期待通过这场年度评选,去发现 并致敬那些真正引领变革、开拓边界的探索者与实践者。 本次评选将从 企业 、 产品 、 人物 三大维度,设立五类奖项。欢迎企业踊跃报名! 让我们共同见证年度之星,点亮未来的方向。 企业榜 产品榜 人物榜 2025 人工智能年度 焦点人物 详细评选标准及报名方式如下。 2025 人工智能年度领航企业 2025 人工智能年度 领航企业 2025 人工智能年度 潜力创业公司 2025 人工智能年度 杰出产品 2025 人工智能年度 杰出解决方案 将面向中国人工智能领域,评选出最具综合实力的企业, 参选条件 : 评选标准 : 2025 人工智能年度潜力创业公司 聚焦于中国人 ...
AI花17小时写了篇30页学术论文!自主选题,包含实验,还符合APA格式规范
量子位· 2025-10-04 04:13
闻乐 发自 凹非寺 量子位 | 公众号 QbitAI 不是拼凑知识点,AI这次是真搞研究。 一个叫 Virtuous Machines 的AI系统,花了17小时、114美元,找了288个真人做实验,写了一篇30页的学术论文。 而且还是 从选题到成稿 全自动化速通!? 来看看这个AI都写了点啥。 AI自动化做科研:从灵光一现到可发表论文 AI自主完成的这个论文属于 认知心理学领域 ,具体聚焦于 人类视觉认知 相关的研究方向。 而且它可不是瞎写,而是靠人类的科研套路来。 先是基于认知心理学理论提出研究问题,比如"视觉工作记忆与心理旋转能力有没有关系"、"心理意象清晰度对视觉认知任务表现有什么影 响"等。 (视觉工作记忆是指人类维持并处理视觉信息的能力,涉及信息存储、操作和提取过程;心理旋转是指通过心理操作实现空间客体旋 转以完成知觉匹配的认知过程) 像人类一样搞科研 接着设计实验方案,考虑到了样本量计算、控制变量,还用VVIQ2量表测量被试(对象)的心理意象清晰度; 在确定好实验方案后,它还通过在线平台Prolific招募了288名被试对象,等277份有效数据(部分被试未完成实验,被AI筛除了)收上来,它 又连续 ...
陶哲轩用GPT-5解决数学难题:仅29行Python代码
量子位· 2025-10-04 04:13
Core Insights - The article highlights how AI, specifically GPT-5, has significantly aided mathematician Terence Tao in solving complex mathematical problems, reducing the time and effort required for manual calculations and coding [1][2][3]. Group 1: AI's Role in Mathematics - Terence Tao expressed that without AI assistance, completing similar tasks would take several hours, primarily due to manual coding and debugging [1]. - Tao utilized GPT-5 to tackle a problem on MathOverflow regarding the relationship between the least common multiple sequence and highly abundant numbers, which required extensive numerical searches [7][10]. - The AI's ability to assist in this mathematical inquiry marks a new era of collaboration between humans and machines in exploring complex problems [5][29]. Group 2: Problem-Solving Process - Initially, Tao attempted to have GPT-5 generate a Python program to search for counterexample parameters but faced issues with long execution times and improper initial parameters [19][20]. - He then shifted to a step-by-step dialogue with GPT-5, breaking down the larger problem into smaller, manageable parts, which ultimately led to the successful generation of the required parameters [21][22]. - The final solution involved a concise 29-line Python script generated by GPT-5, which Tao used for independent verification, confirming the results aligned with his heuristic predictions [23][24]. Group 3: Broader Implications of AI in Research - This instance is not the first time Tao has employed AI for mathematical problem-solving; he has previously used AI for various projects, demonstrating its potential as a mediator in mathematical proofs [27][28]. - The article suggests that while AI may not achieve accolades like the Fields Medal in the short term, it can significantly enhance the efficiency and effectiveness of mathematical research [28][29].