量子位
Search documents
量子位编辑作者招聘
量子位· 2025-12-08 06:07
编辑部 发自 凹非寺 量子位 | 公众号 QbitAI AI热潮还在汹涌,但如果你还不知道如何参与……那为什么不来 量子位 呢? 我们是一家以 追踪AI新进展 为核心的内容平台,经过8年积累,目前拥有顶流影响力,广泛且备受认可的产业资源,以及时代风口的最佳观 测和学习生态位。 目前,我们有 三大方向 岗位招聘,希望你是 (或者能成为) 这三个方向的内容专家: 岗位均为全职,工作地点:北京中关村。 岗位面向: 加入我们,你可以获得: 任职要求: 以下是岗位详情: 所有岗位不同能力层级职位均在开放,欢迎结合个人履历和经验申请。 AI产业方向 岗位职责: AI产业方向 :关注基建层创新,包含芯片、AI Infra、云计算; AI财经方向 :关注AI领域创投和财报,跟踪产业链资本动向; AI产品方向 :关注AI在应用和硬件终端方向的进展。 社招:覆盖编辑、主笔、主编各个层级,按能力匹配岗位; 校招:应届毕业生,接受实习且可转正。 站在AI浪潮之巅 :第一时间接触和了解AI领域最新技术和产品,构建完整的AI认知体系。 玩转AI新工具 :将各种AI新技术、新工具应用于工作,提升工作效率和创造力。 打造个人影响力 :通过撰 ...
哈萨比斯:DeepMind才是Scaling Law发现者,现在也没看到瓶颈
量子位· 2025-12-08 06:07
Core Insights - The article emphasizes the importance of Scaling Laws in achieving Artificial General Intelligence (AGI) and highlights Google's success with its Gemini 3 model as a validation of this approach [5][19][21]. Group 1: Scaling Laws and AGI - Scaling Laws were initially discovered by DeepMind, not OpenAI, and have been pivotal in guiding research directions in AI [12][14][18]. - Google DeepMind believes that Scaling Laws are essential for the development of AGI, suggesting that significant data and computational resources are necessary for achieving human-like intelligence [23][24]. - The potential for Scaling Laws to remain relevant for the next 500 years is debated, with some experts expressing skepticism about its long-term viability [10][11]. Group 2: Future AI Developments - In the next 12 months, AI is expected to advance significantly, particularly in areas such as complete multimodal integration, which allows seamless processing of various data types [27][28][30]. - Breakthroughs in visual intelligence are anticipated, exemplified by Google's Nano Banana Pro, which demonstrates advanced visual understanding [31][32]. - The proliferation of world models is a key focus, with notable projects like Genie 3 enabling interactive video generation [35][36]. - Improvements in the reliability of agent systems are expected, with agents becoming more capable of completing assigned tasks [38][39]. Group 3: Gemini 3 and Its Capabilities - Gemini 3 aims to be a universal assistant, showcasing personalized depth in responses and the ability to generate commercial-grade games quickly [41][44][45]. - The architecture of Gemini 3 allows it to understand high-level instructions and produce detailed outputs, indicating a significant leap in intelligence and practicality [46]. - The frequency of Gemini's use is projected to become as common as smartphone usage, integrating seamlessly into daily life [47].
英伟达4B小模型击败GPT-5 Pro!成本仅1/36
量子位· 2025-12-08 06:07
英伟达小模型持续获胜。 ARC-AGI 2最新成绩,4B小模型 NVARC 以 27.64% 的公开榜成绩力 压GPT-5 Pro 18.3%登顶榜首。 且每任务成本仅20美分,大约是GPT-5 Pro单任务成本(超过7美元)的 1/36。 闻乐 发自 凹非寺 量子位 | 公众号 QbitAI 据官方分析,此次NVARC夺冠的亮点在于 零预训练深度学习方法 ,没有依赖大规模通用数据集进行前期预训练, 规避了预训练模型的领域 偏见、数据依赖等问题。 而ARC-AGI 2确实是一个消除了与公共训练数据重叠的更高难度测试, 主要是看测试模型能否高效地获取超出其训练数据的新技能。 快来看看"性价比之王"是如何"练"成的? 不靠参数堆料 英伟达的策略是将复杂推理移至离线的合成数据管道, 训练能在评估时快速运行的较小模型。 简单来说就是 大规模合成高质量数据 ,然后对现有模型进行优化, 并且 将昂贵的计算工作转移到离线进行 。 为了确保数据质量,他们将复杂的推理管线拆分成不同的阶段,每个阶段都可以独立验证。 通过这种方式,他们建立了一个含320万+ 增强样本的合成数据集,其中每个样本最多有7对输入/输出。 | Sourc ...
本周三!量子位的这件大事就要来了|MEET2026
量子位· 2025-12-08 06:07
Core Insights - The MEET2026 Intelligent Future Conference is a significant event in the AI sector, featuring prominent speakers from academia and industry, including Tsinghua University and major tech companies like Baidu and Google Cloud [1][21][39] - The conference will cover a wide range of topics related to AI, including large language models, embodied intelligence, and cloud computing applications [3][39] - The event aims to provide practical insights and discussions on the current state and future of AI technology, focusing on real-world applications rather than theoretical concepts [33][34] Highlights - Highlight 1: The conference will feature a GenAI dialogue and an Agent roundtable, addressing pressing questions about AI's impact on industries and the evolution of autonomous technologies [5][8][12] - Highlight 2: Nearly thirty influential guests from academia and industry will participate, discussing the latest advancements and challenges in AI, including insights from Tsinghua University and leading tech firms [17][21] - Highlight 3: The event will release two important documents: the "2025 AI Top Ten Trends Report" and the "2025 AI Annual List," summarizing key developments and influential figures in the AI landscape [35][39] Event Details - The MEET2026 conference is scheduled for December 10, 2025, at the Beijing Jinmao Hotel, focusing on how AI technologies can drive societal progress [37][39] - The agenda includes various sessions led by industry leaders, covering topics from AI's role in enhancing productivity to the future of AI agents [41][42]
嚯,38%斯坦福本科生是“残疾人”
量子位· 2025-12-08 04:00
鹭羽 发自 凹非寺 量子位 | 公众号 QbitAI 而且绝非个例……常春藤里有一个算一个,"残疾"比例都高到离谱。 蛤? 38% 的斯坦福本科生都是"残疾人"??? 不过,你要是以为这是"身残志坚"的励志故事,那就大错特错,NoNoNo! 他们的目的只有一个—— 考试时间能延长50%! 斯坦福38%本科生注册"残疾" 根据数据显示,今年38%的 斯坦福大学 本科生注册为"有残疾",其中24%的学生都在秋季学期享受学术或住房特殊照顾。 但事实上,在他们当中,绝大多数并非传统意义上的身体残疾,而是ADHD (注意力缺陷多动障碍) 、焦虑抑郁诸如此类的心理问题。 获得该"残疾"认证的方式也相当简单, 只需要一张基础的医生证明 。 过去可能需要对应的临床数据佐证,例如药物治疗、相关病史等,但随着2008年《美国残疾人法案》 (ADA) 的修订,法律上对残疾的定 义扩充到"阅读、学习、集中注意力、思考"等认知学习过程受影响的群体。 高等教育与残疾协会 (AHEAD) 也随之发布指南,要求高校采取更为宽松的审核制度——更重视学生的个人感受,而不是仅依赖医学诊 断。 与此同时,诊断标准也在逐步放宽,2013年美国精神病学 ...
英伟达自毁CUDA门槛!15行Python写GPU内核,性能匹敌200行C++
量子位· 2025-12-08 04:00
梦晨 发自 凹非寺 量子位 | 公众号 QbitAI GPU编程变天了。 英伟达发布最新版 CUDA 13.1 ,官方直接定性: 这是自2006年诞生以来最大的进步 。 核心变化是推出全新的 CUDA Tile编程模型 ,让开发者可以 用Python写GPU内核 ,15行代码就能达到200行CUDA C++代码的性能。 消息一出,芯片界传奇人物 Jim Keller 立即发问: 英伟达是不是亲手终结了CUDA的"护城河"?如果英伟达也转向Tile模型,AI内核将更容易移植到其他硬件上。 Jim Keller参与设计过AMD Zen架构、苹果A系列芯片、特斯拉自动驾驶芯片的"硅仙人",他的判断在行业里相当有分量。 那么问题来了:CUDA这次到底改了什么?为什么会被认为是"自毁长城"? GPU编程范式从"线程"到"瓦片" 要理解这次更新的意义,得先回顾一下传统CUDA编程有多折磨人。 过去20年,CUDA一直采用 SIMT(单指令多线程)模型 ,开发者写代码时,需要手动管理线程索引、线程块、共享内存布局、线程同步, 每一个细节都要自己操心。 想要充分利用GPU性能,特别是用上Tensor Core这类专用模块,更 ...
打工15年,被大厂裁4次了
量子位· 2025-12-07 11:00
Jay 发自 凹非寺 量子位 | 公众号 QbitAI 15年内被裁4次,在惨遭微软、Meta等大厂优化后,美国传奇牛马老李头,今年又被苹果单方面分手了。 丢掉工作的六个月来,他参与了无数面试,收件箱里得到的反馈几乎是清一色的: 「很抱歉,经过综合评估,您这次的面试没有通过。」 没办法,谁叫他今年已经57岁了? 按说,老李在科技公司摸爬滚打十多年,资历够、经历多,怎么着都算是各大厂争抢的香饽饽。 可现实偏不按套路走——被裁之后,他并没有像旁人想象的那样无缝衔接,反而在足足半年时间内都深陷漫无天日的求职泥沼。 不过也是老李入行晚, 十四年前加入微软当产品经理的时候,他就已经43岁了 。 哪想到,「老来俏」的好日子才过三年,噩耗就从天而降—— 微软宣布启动 1.8万人规模的大裁员 ,老李也不幸成为KPI。 虽说靠着缓冲期,他又在内部找了个岗位续上了工作,但活儿实在太无聊。拖了几年,他还是决定挥手告别微软。 老李的第二站是 Meta 。 这一次,他在Meta担任产品营销经理,负责一款AR眼镜。 不过,被大厂裁出心理阴影的老李,似乎靠AI摸索出了一条能保住饭碗的道路…… 连续被裁四次,苹果只拿他当合同工 去年九月,本 ...
实测完豆包Seedream 4.5,替我设计师朋友哭了
量子位· 2025-12-07 09:00
嘻疯 发自 凹非寺 量子位 | 公众号 QbitAI 豆包升级上新,火山引擎带着 图 像创作模型 Doubao-Seedream-4.5 来了。 新模型有三个主打点。 一是强化了 原 图保持能 力 ,最大化保持原图的人脸、光影与色调、画面细节,可以用来P图。 例如"只保留绿线中的人物,将其他角色都删掉": 再复杂一些,将白天变为黑夜: 二是重点强化了 多图组合生成能力 。 在官方展示中,输入8张参考图,并指定画面布局后,让它生成图画故事书封面: 童话故事书封面:小女孩与小狐狸站在发光森林小屋前,月亮巨大而梦幻,星尘在他们周围飘浮;萤火虫的光点点亮草地;小白花细致 点缀;雾气营造柔和深度;古铜色童话边框华丽包围整个场景;色调是蓝紫与暖金对撞;角色面部特征保持原图一致;整体梦幻、温 柔、魔法感强烈,适合作为儿童绘本封面。 把图片中的英文转成手写体中文: Seedream-4.5 能 精准执 行复杂指令,将多种元素精准识别提取出来 ,并自然融合: 同样地,让多个角色"拍"一张大合照: 模型也能生成无违和感的群像画面: 反过来,根据一张参考图,一次性生成6张海报,比例分别改成1:1、2:3、4:3、16:9、1:2、 ...
他们让万亿参数RL学会了「省着跑」,顺便砍掉九成算力
量子位· 2025-12-07 09:00
Core Insights - The competition focus in AI large models is fundamentally shifting towards Reinforcement Learning (RL) as the next growth engine, with significant advancements in RL training methods [2][3][10] - The cost of running RL on trillion-parameter models has been prohibitively high, limiting access to only a few companies, but recent breakthroughs have drastically reduced these costs [4][5][11] - Mind Lab's innovative approach using LoRA for efficient RL training has achieved a 90% reduction in GPU consumption while maintaining performance, marking a paradigm shift in training methodologies [6][18][20] Group 1: Reinforcement Learning Advancements - The marginal returns of pre-training are declining, and the industry is actively seeking new growth engines, with RL emerging as a key focus [2][10] - RL is transitioning from a supplementary role to becoming the main battleground for the evolution of large models, essential for adapting trillion-parameter models to agent tasks [3][10][11] - Mind Lab's solution involves using LoRA for parameter-efficient adaptation, significantly reducing the computational load of RL training [13][18] Group 2: Cost and Efficiency - The cost of running LoRA RL on the Kimi K2 model is only about 10% of traditional full-parameter RL, enabling broader access to RL training [18] - Training stability has improved, with consistent increases in reward and task success rates during training, avoiding catastrophic failures [19] - The general capabilities of the models have been preserved while enhancing specific task performance through LoRA RL [20] Group 3: Technical Challenges and Solutions - The challenges of running RL on trillion-parameter models include imbalanced routing, communication overhead, and complex parallel layouts [21][24][25] - Mind Lab's mixed cooperative parallel engine design addresses these challenges by unifying various parallel processing methods, optimizing resource scheduling [26] - The introduction of truncated importance sampling ratios helps mitigate distribution mismatches during RL training, ensuring effective learning [30] Group 4: Memory Mechanisms and Real-World Applications - Mind Lab has developed a new memory mechanism called Memory Diffusion, which mimics human-like "intelligent forgetting" to enhance memory efficiency [42][45] - This approach allows the model to dynamically compress and retain meaningful experiences while discarding irrelevant information, achieving high accuracy in benchmarks [49] - The concept of Research-Product Co-Design emphasizes the importance of real-world feedback in training, leading to more effective RL environments [50][54] Group 5: Future Directions and Industry Impact - The transition from a pre-training era to an experiential intelligence era is underway, focusing on how intelligence grows in real-world contexts [59][62] - Mind Lab aims to enhance model learning efficiency and adaptability, positioning itself as a leader in the next generation of AI research [66] - The team's diverse expertise and commitment to open-source collaboration are expected to accelerate advancements in AI technologies [64][68]
下周三!量子位的这件大事就要来了|MEET2026
量子位· 2025-12-07 04:35
Core Insights - The MEET2026 Intelligent Future Conference is a significant event in the AI sector, featuring prominent speakers from academia and industry, including Tsinghua University and major companies like Baidu and Google Cloud [1][21][39] - The conference will cover a wide range of topics related to AI, including large language models, embodied intelligence, and cloud computing applications [3][39] - The event aims to provide practical insights and discussions on the current state and future of AI technology, focusing on real-world applications rather than theoretical concepts [33][34] Highlights - Highlight 1: The conference will feature a GenAI dialogue and an Agent roundtable, addressing pressing questions about AI's impact on industries and the evolution of autonomous technologies [5][8][12] - Highlight 2: Nearly thirty influential guests from academia and industry will participate, discussing the latest advancements and challenges in AI, including insights from Tsinghua University and leading tech companies [17][21] - Highlight 3: The event will release two important documents: the "2025 AI Top Ten Trends Report" and the "2025 AI Annual List," summarizing key developments and influential figures in the AI landscape [35][39] Event Details - The MEET2026 conference is scheduled for December 10, 2025, at the Beijing Jinmao Hotel, with a focus on how AI technologies are transforming various sectors [37][39] - The agenda includes a series of talks and discussions from industry leaders, covering topics from AI's role in enhancing productivity to the future of AI agents [41][42]