Workflow
大模型
icon
Search documents
运营商首次入股个人征信机构 朴道征信引入战略股东中移投资
"未来,公司将以此为契机,继续深化'征信+科技'核心能力,持续加大研发投入,积极探索大模型等先 进技术在征信领域的应用,完善产品体系,拓展服务场景,为金融机构提供更智能、更安全、更高效的 征信服务,为普惠金融提供坚实的数据基石与风控保障,为推动征信体系建设和构建数字经济新生态贡 献更大力量。"朴道征信方面进一步表示。 (文章来源:中国经营报) 近日,朴道征信有限公司(以下简称"朴道征信")披露正式引入中移投资控股有限责任公司(以下简 称"中移投资")作为战略股东,新增股东中移投资成立于2016年,注册资本200亿元,是中国移动股权 投资和资本运作的集中管理平台。 朴道征信方面公开表示,中移投资成为朴道征信重要股东,不仅优化了朴道征信的股权结构,也将使中 国移动的数据资源禀赋更加深度融入我国信用体系建设,进一步拓宽数据应用场景、创新数据产品,更 大程度激发数据要素活力、释放数据要素价值,助力金融服务实体经济和数字经济发展。 ...
即将斩获“大模型第一股”桂冠,智谱AI如何破解商业化谜题?
Sou Hu Cai Jing· 2025-12-30 09:20
2025年12月30日,被誉为"全球大模型第一股"的北京智谱华章科技股份有限公司(以下简称"智谱AI") 正式启动在香港的上市招股程序,计划于2026年1月8日挂牌交易。这标志着,自ChatGPT掀起全球AI浪 潮三年后,中国大模型产业的头部玩家正式步入接受公开市场审视的新阶段。 智谱AI的上市之路,与其主要竞争对手MiniMax(上海稀宇科技)几乎同步,两者在12月相继通过港交 所聆讯,一场关于商业模式、估值逻辑和未来话语权的终极较量已然展开。然而,招股书所揭示的,远 不止"第一股"的光环,更是一幅高增长、高投入与高亏损并存的行业真实图景:三年半累计亏损超62亿 元,账面现金一度被推算仅能支撑数月。 与此同时,其收入结构高度集中,截至2025上半年,84.8%来自私有化部署项目,主要客户为政府与大 型企业,商业模式仍深陷定制化交付的重资产逻辑。 01 营收飞速增长,暗藏结构性隐忧 在此背景下,智谱AI成立于2019年,至今仅六年时间,却已在中国大模型创业浪潮中占据先发优势。 在业内广为流传的"大模型六小龙"中,智谱AI是唯一一家成立于2020年之前的公司。其余五家,包括月 之暗面、百川智能、零一万物、阶跃星 ...
死磕技术的自动驾驶黄埔军校,元旦大额优惠......
自动驾驶之心· 2025-12-30 09:20
Core Viewpoint - The article emphasizes the establishment of a comprehensive community for autonomous driving knowledge, aiming to facilitate learning, sharing, and collaboration among industry professionals and newcomers in the field [22][23]. Group 1: Community and Learning Resources - The "Autonomous Driving Heart Knowledge Planet" has been created to provide a platform for technical exchange, academic discussions, and engineering problem-solving, with members from renowned universities and leading companies in the autonomous driving sector [22][23]. - The community has over 4,000 members and aims to grow to nearly 10,000 in the next two years, offering a rich environment for both beginners and advanced learners [8][10]. - Various learning resources, including video tutorials, articles, and structured learning paths, are available to help members quickly access information and enhance their skills in autonomous driving [10][16]. Group 2: Technical Insights and Developments - Recent updates include insights from industry leaders on topics such as Waymo's latest base model, advancements in self-driving technology, and discussions on data loops and training cycles [7][10]. - The community has compiled over 40 technical routes covering various aspects of autonomous driving, including VLA benchmarks, multi-modal models, and data annotation practices [10][23]. - Members can engage with industry experts to discuss trends, technological advancements, and challenges in mass production of autonomous vehicles [11][26]. Group 3: Job Opportunities and Career Development - The community provides job recommendations and internal referrals to help members connect with potential employers in the autonomous driving industry [16][26]. - Regular discussions on career paths, research directions, and practical applications in the field are facilitated to support members in their professional growth [25][96]. - The platform encourages collaboration and networking among members, fostering a supportive environment for career advancement [20][26].
高频因子跟踪:Gemini3 Flash等大模型的金融文本分析能力测评
SINOLINK SECURITIES· 2025-12-30 09:02
Quantitative Models and Construction Methods 1. Model Name: High-frequency "Gold" Combination CSI 1000 Index Enhanced Strategy - **Model Construction Idea**: This model combines three types of high-frequency factors (price range, price-volume divergence, and regret avoidance) with equal weights to enhance the CSI 1000 Index. It aims to leverage the predictive power of high-frequency factors for stock selection[3][62][66] - **Model Construction Process**: 1. Combine the three high-frequency factors (price range, price-volume divergence, and regret avoidance) with weights of 25%, 25%, and 50%, respectively[36][42][51] 2. Neutralize the combined factor by industry market capitalization[36][42][51] 3. Implement weekly rebalancing with a turnover buffer mechanism to reduce transaction costs[62][66] - **Model Evaluation**: The model demonstrates strong excess return performance both in-sample and out-of-sample, with a stable upward trend in the net value curve[39][66] 2. Model Name: High-frequency & Fundamental Resonance Combination CSI 1000 Index Enhanced Strategy - **Model Construction Idea**: This model integrates high-frequency factors with fundamental factors (consensus expectations, growth, and technical factors) to improve the performance of multi-factor investment portfolios[67][69] - **Model Construction Process**: 1. Combine the three high-frequency factors (price range, price-volume divergence, and regret avoidance) with fundamental factors (consensus expectations, growth, and technical factors) using equal weights[67][69] 2. Neutralize the combined factor by industry market capitalization[67][69] 3. Implement weekly rebalancing with a turnover buffer mechanism to reduce transaction costs[67][69] - **Model Evaluation**: The model shows improved performance metrics compared to the high-frequency-only strategy, with higher annualized returns and Sharpe ratios[69][71] --- Model Backtesting Results 1. High-frequency "Gold" Combination CSI 1000 Index Enhanced Strategy - Annualized Return: 9.63% - Annualized Volatility: 23.82% - Sharpe Ratio: 0.40 - Maximum Drawdown: 47.77% - Annualized Excess Return: 9.85% - Tracking Error: 4.32% - IR: 2.28 - Maximum Excess Drawdown: 6.04%[63][66] 2. High-frequency & Fundamental Resonance Combination CSI 1000 Index Enhanced Strategy - Annualized Return: 13.80% - Annualized Volatility: 23.44% - Sharpe Ratio: 0.59 - Maximum Drawdown: 39.60% - Annualized Excess Return: 13.93% - Tracking Error: 4.20% - IR: 3.31 - Maximum Excess Drawdown: 4.52%[69][71] --- Quantitative Factors and Construction Methods 1. Factor Name: Price Range Factor - **Factor Construction Idea**: Measures the activity of stock transactions in different price ranges during the day, reflecting investors' expectations of future stock trends[3][33] - **Factor Construction Process**: 1. Use high-frequency snapshot data to calculate transaction volume and number of transactions in high (80%) and low (10%) price ranges[33][36] 2. Combine sub-factors with weights of 25%, 25%, and 50%[36] 3. Neutralize the combined factor by industry market capitalization[36] - **Factor Evaluation**: The factor shows strong predictive power and stable performance, with a steadily upward excess net value curve[39] 2. Factor Name: Price-Volume Divergence Factor - **Factor Construction Idea**: Measures the correlation between stock price and trading volume. Lower correlation indicates a higher probability of future price increases[3][40] - **Factor Construction Process**: 1. Use high-frequency snapshot data to calculate the correlation between price and trading volume, as well as price and transaction count[40][42] 2. Combine sub-factors with equal weights[42] 3. Neutralize the combined factor by industry market capitalization[42] - **Factor Evaluation**: The factor's performance has been relatively flat in recent years but has shown good excess return this year[44] 3. Factor Name: Regret Avoidance Factor - **Factor Construction Idea**: Based on behavioral finance, this factor captures investors' regret avoidance emotions, such as the impact of selling stocks that later rebound[3][46] - **Factor Construction Process**: 1. Use tick-by-tick transaction data to identify active buy/sell directions[46] 2. Construct sub-factors like sell rebound ratio and sell rebound deviation, and apply restrictions on small orders and closing trades[46] 3. Combine sub-factors with equal weights and neutralize by industry market capitalization[46][51] - **Factor Evaluation**: The factor shows stable upward performance and strong excess return levels out-of-sample[53] 4. Factor Name: Slope Convexity Factor - **Factor Construction Idea**: Captures the impact of order book slope and convexity on expected returns, reflecting investor patience and supply-demand elasticity[3][54] - **Factor Construction Process**: 1. Use order book data to calculate the slope of buy and sell orders at different levels[54] 2. Construct sub-factors for low-level slope and high-level convexity, and combine them[54][58] 3. Neutralize the combined factor by industry market capitalization[58] - **Factor Evaluation**: The factor has shown stable performance since 2016, with relatively flat out-of-sample results[61] --- Factor Backtesting Results 1. Price Range Factor - Annualized Excess Return: 4.90% - IR: 1.13 - Maximum Excess Drawdown: 1.89%[36][39] 2. Price-Volume Divergence Factor - Annualized Excess Return: 5.59% - IR: 1.29 - Maximum Excess Drawdown: 2.13%[42][44] 3. Regret Avoidance Factor - Annualized Excess Return: -2.62% - IR: -0.61 - Maximum Excess Drawdown: 1.69%[46][53] 4. Slope Convexity Factor - Annualized Excess Return: -10.40% - IR: -2.35 - Maximum Excess Drawdown: 2.42%[58][61]
AI再现造富神话,曾一夜爆火的Manus被Meta收购,估值从不足5亿美元骤升至数十亿美元,产品发布仅9个月,真格基金、红杉中国、腾讯等赚麻了
Sou Hu Cai Jing· 2025-12-30 08:27
据《晚点LatePost》报道,此次Meta收购Manus的费用为数十亿美元,而在Meta收购前Manus正以20亿 美元估值进行新一轮融资。 值得注意的是, Manus上一轮融资是在今年4月份,当时有知情人士透露,"蝴蝶效应"的融资规模为 7500万美元,由美国硅谷知名风投公司Benchmark领投,几家现有投资者跟投。在这轮融资中,"蝴蝶 效应"的估值上升了大约四倍,达到近5亿美元。这意味着,短短8个月估值从近5亿美元暴增至数十亿美 元,Manus创始人肖弘以及背后投资机构赚翻了! 真格基金合伙人、蝴蝶效应公司天使投资人刘元表示,这次收购谈判在极短时间完成,前后不过十余 天。刚开始创始团队比较纠结,但最终被Meta创始人马克·扎克伯格开出的条件和愿景打动。扎克伯格 和几位核心高管也是Manus忠实用户。 至于此次扎克伯格开出的具体条件,外界不得而知。不过,扎克伯格并购的案例中出手十分阔绰,在 Meta的并购史上这一手笔仅次于2014年收购WhatsApp(190亿美元)和今年早些时候增持ScaleAI(143 亿美元)的交易,是Meta成立以来第三大收购。今年Meta已斥资约149亿美元收购了顶级AI数据 ...
前瞻“AI+”应用落地元年:消费电子价格上涨,商业模式有变
21世纪经济报道记者冉黎黎北京报道2026年将成为"人工智能+"应用落地元年——这是12月29日举行的 赛迪顾问"2026年IT趋势"发布会上给出的研判。 受访赛迪顾问专家指出,此前人工智能虽已有一些比较好的落地,但"人工智能+"行业应用整体还在探 索阶段,而2026年政府及央国企有望在政务、工业、能源等重点领域加快布局AI应用,率先形成一批 高价值、可复制推广的应用场景示范项目。 从算力来看,赛迪顾问电子信息产业研究中心资深分析师张耀嵘在发布会上介绍,近年来,随着大模型 与行业应用深度融合,算力需求呈现指数级增长。预计2026年中国算力总规模将突破1200 EFLOPS,稳 居全球第二。其中,智能算力作为规模增长的核心引擎,贡献率接近90%。 随着"人工智能+"行动深入推进,算力需求将大幅增长。赛迪顾问预计2026年中国算力总规模将突破 1200 EFLOPS,稳居全球第二。其中,智能算力作为规模增长的核心引擎,贡献率接近90%。与此同 时,相关商业模式也正发生转变,无论是人工智能应用还是算力服务,在2026年,商业模式都有望 从"为技术或功能付费"向"为效果付费"转变。 需要注意的是,2025年8月印发的 ...
东方证券联合上交所开展“我是股东”走进沪市上市公司招商轮船活动
Jin Rong Jie· 2025-12-30 08:05
为持续引导投资者树立股东意识,积极行使股东权利,提升上市公司投资者关系管理水平,营造理性投资、价值投资、长期投资的市场氛围,9月17日,东 方证券联合上海证券交易所、上海市证券同业公会联合开展"我是股东"——走进沪市上市公司招商轮船(601872)活动顺利举行。东方证券投资者教育基地 组织高净值个人及机构投资者等30余位,实地参观了轮船招商总局,并与公司高管进行了深度交流。 "我是股东"走进上市公司活动自2013年启动以来,已陪伴投资者走过十余年历程,累计组织投资者走进沪市上市公司超过2000家次,仅2024年就达到450家 次,成为资本市场促进投资者与上市公司双向沟通、增强投资者获得感的重要品牌。 在投资者交流会现场,招商轮船董事会秘书孔康,董事会办公室总经理李漫、董事会办公室副总经理刘宇丰、ESG总监蔡晓华等出席活动。招商轮船董秘孔 康先生在致辞中向投资者重点介绍了公司近期在航运主业和ESG工作中取得的亮眼成绩,并强调公司始终将投资者回报和持股体验放在公司价值创造的核心 位置,让广大股东切实分享公司发展的成果。 据了解,招商轮船作为招商局旗下重点发展远洋运输的航运企业,经营和管理着大中华地区历史最悠久、最 ...
“大模型第一股”今起招股!智谱9天后港股上市,IPO市值超511亿港元,MiniMax紧随其后已通过聆讯
Jin Rong Jie· 2025-12-30 08:05
Core Viewpoint - Beijing Zhiyu Huazhang Technology Co., Ltd., known as "China's version of OpenAI," is set to launch its IPO on the Hong Kong Stock Exchange, aiming to raise approximately HKD 4.3 billion with an expected market capitalization exceeding HKD 51.1 billion upon listing [1][2]. Group 1: IPO Details - The company plans to issue 37.42 million H-shares, with 5% allocated for Hong Kong and 95% for international investors, plus an overallotment option of 15% [1]. - The expected share price is HKD 116.20 per share, with a minimum purchase of 100 shares [1]. - The IPO subscription period runs from December 30, 2023, to January 5, 2024, with the official listing scheduled for January 8, 2024 [1]. Group 2: Financial Backing and Investment - Zhiyu has completed eight rounds of financing prior to the IPO, raising over HKD 8.3 billion [2]. - The company has secured cornerstone investors, including JSC International Investment Fund SPC and JinYi Capital Multi-Strategy Fund SPC, with a total subscription amount of approximately HKD 2.98 billion [2]. Group 3: Business Overview - Founded in June 2019, Zhiyu focuses on developing general large models and has launched China's first proprietary pre-trained model framework, GLM [4]. - The company has supported over 8,000 institutional clients and approximately 800,000 devices as of June 30, 2025 [4]. - Revenue figures for 2022, 2023, and 2024 are projected at HKD 57 million, HKD 125 million, and HKD 312 million, respectively, reflecting a compound annual growth rate of over 130% [4]. - Despite significant revenue growth, the company remains unprofitable [4]. Group 4: Market Position - According to Frost & Sullivan, Zhiyu ranks first among independent general large model developers in China and second overall, holding a market share of 6.6% based on 2024 revenue [4]. - The competitive landscape includes other large model companies, such as MiniMax, which recently went public [4].
北大人民医院携手蚂蚁健康 成立医学人工智能创新联合研究中心
Zheng Quan Ri Bao Wang· 2025-12-30 07:44
Core Insights - The establishment of the "Medical Artificial Intelligence Innovation Joint Research Center" by Peking University People's Hospital and Ant Group Health aims to advance the application of AI technologies in the healthcare sector [1][2] - The launch of the first national standard for "AI doctors" in the surgical field signifies a systematic step towards standardizing the technical application of medical AI [1][2][3] Group 1: AI Research and Development - The research center will focus on addressing clinical pain points and exploring innovative applications of AI in specialized disease diagnosis, clinical decision support, and health management models [1] - The GAPS (Grounding, Adequacy, Perturbation, Safety) evaluation framework for large models in specialized disease evidence-based capabilities has been developed and applied in the "Antifufu" App [2] Group 2: Collaboration and Standards - Over 500 doctors have contributed to the "Famous Doctor AI Avatar" feature on the "Antifufu" App, providing 24/7 professional health consultation services to the public [2] - The national standard for "AI doctors" in the surgical field outlines technical requirements for medical expertise, interactive service capabilities, safety, and ethical compliance [3] Group 3: Industry Impact - The integration of AI in clinical decision support and health management is becoming increasingly important, necessitating clear capability boundaries, unified technical standards, and an evaluable governance mechanism for scalable industry development [2] - Ant Group emphasizes the importance of collaboration with industry partners to drive forward research and innovative applications of AI in healthcare [3]
智谱出征,Manus“远嫁”
佩妮Penny的世界· 2025-12-30 07:15
大家好,我是佩妮~ 今天是个好日子!撒花 除了 Manus 被 Meta 收购,其实 AI 行业还有个大事件,就是 大模型公司智谱华章,在港交所开始申购 了,预计在1月8日在港交所主板上市。 以每股 116.2 港币发行价计算,这次的募资总额预计达到 43 亿港币,市值超过 511 亿港币 (约 460 亿RMB 左右)。 | 以每股 | 116.2 港币发行价计算,这次的募资总额预计达到 | 43 亿港币,市值超过 | 511 亿港币 | (约 | 460 亿RMB 左右)。 | | | | --- | --- | --- | --- | --- | --- | --- | --- | | (也是好消息,和Manus撞上了有点生不逢时,堪称 | AI 界汪峰……) | | | | | | | | AI 行业的朋友,前阵肯定都会刷到 | MiniMax 这两家明星公司,通过港交所聆讯的消息。 | 只要关注 | 智谱 | 和 | 前阵子还老有人猜谁会是第一股(智谱是 | 19 号披露的招股书,minimax 晚了两天),现在不用猜了,花落智谱,不愧是 | "AI 国家队" 。 | | IPO 都喜欢叫自己 | ...