Workflow
风格配置
icon
Search documents
盈利、情绪和需求预期:市场信息对宏观量化模型的修正——数说资产配置系列之十一
申万宏源金工· 2025-08-25 08:01
Group 1 - The article discusses a macro quantitative framework that combines economic, liquidity, credit, and inflation factors for asset allocation and industry/style configuration [1][3] - The framework has been adjusted based on the changing mapping of macro variables to assets, with a focus on economic and liquidity indicators [1][5] - The performance of aggressive portfolios since 2013 shows an annualized return of approximately 8.5%, with a 0.6% excess return compared to the benchmark [3][5] Group 2 - The article highlights the impact of macroeconomic conditions on industry and style configurations, incorporating credit sensitivity into the analysis [5][7] - The macro-sensitive industry configuration has shown varying performance, with a notable decline since 2022, indicating the need for adjustments in selection criteria [7][10] - The article emphasizes the importance of market expectations in influencing macroeconomic indicators and their relationship with asset performance [13][18] Group 3 - The Factor Mimicking model is introduced to capture market expectations regarding macro variables, using a refined stock pool for better representation [19][20] - The construction of the Factor Mimicking portfolio aims to reflect the market's implicit views on economic, liquidity, inflation, and credit variables [19][23] - The article discusses the need for additional micro mappings to enhance the representation of macro variables, particularly in relation to corporate earnings and valuations [28][30] Group 4 - The article outlines the adjustments made to the macro variables based on market expectations, focusing on economic, liquidity, and credit dimensions [34][36] - The revised indicators are expected to improve asset allocation strategies, particularly in the context of equity markets [39][40] - The performance of the revised industry and style configurations indicates a positive impact from incorporating market expectations into the analysis [46][54]
量化点评报告:八月配置建议:盯住CDS择时信号
GOLDEN SUN SECURITIES· 2025-08-05 01:39
Quantitative Models and Construction 1. Model Name: Odds + Win Rate Strategy - **Model Construction Idea**: This strategy combines the risk budget of the odds-based strategy and the win-rate-based strategy to create a comprehensive scoring system for asset allocation[3][48][54] - **Model Construction Process**: 1. The odds-based strategy allocates more to high-odds assets and less to low-odds assets under a target volatility constraint[48] 2. The win-rate-based strategy derives macro win-rate scores from five factors: monetary, credit, growth, inflation, and overseas, and allocates accordingly[51] 3. The combined strategy sums the risk budgets of the two strategies to form a unified allocation model[54] - **Model Evaluation**: The model demonstrates stable performance with low drawdowns and consistent returns over different time periods[54] 2. Model Name: Industry Rotation Strategy - **Model Construction Idea**: This strategy evaluates industries based on three dimensions: momentum/trend, turnover/volatility/beta (crowding), and IR (information ratio) over the past 12 months[43] - **Model Construction Process**: 1. Momentum and trend are measured using the IR of industries over the past 12 months[43] 2. Crowding is assessed using turnover ratio, volatility ratio, and beta ratio[43] 3. The strategy ranks industries based on these metrics and allocates to those with strong trends, low crowding, and high IR[43] - **Model Evaluation**: The strategy has shown strong excess returns and low tracking errors, making it a robust framework for industry allocation[43] --- Model Backtesting Results 1. Odds + Win Rate Strategy - **Annualized Return**: - 2011 onwards: 7.0% - 2014 onwards: 7.6% - 2019 onwards: 7.2%[54] - **Maximum Drawdown**: - 2011 onwards: 2.8% - 2014 onwards: 2.7% - 2019 onwards: 2.8%[54] - **Sharpe Ratio**: - 2011 onwards: 2.86 - 2014 onwards: 3.26 - 2019 onwards: 2.85[56] 2. Industry Rotation Strategy - **Excess Return**: - 2011 onwards: 13.1% - 2014 onwards: 13.0% - 2019 onwards: 10.8%[44] - **Tracking Error**: - 2011 onwards: 11.0% - 2014 onwards: 12.0% - 2019 onwards: 10.7%[44] - **IR**: - 2011 onwards: 1.18 - 2014 onwards: 1.08 - 2019 onwards: 1.02[44] --- Quantitative Factors and Construction 1. Factor Name: Value Factor - **Factor Construction Idea**: Measures stocks with strong trends, low crowding, and moderate odds[27] - **Factor Construction Process**: 1. Trend is measured at zero standard deviation[27] 2. Odds are at 0.3 standard deviation[27] 3. Crowding is at -1.3 standard deviation[27] - **Factor Evaluation**: The factor ranks highest among all style factors, making it a key focus for allocation[27] 2. Factor Name: Quality Factor - **Factor Construction Idea**: Focuses on high odds, weak trends, and low crowding, with potential for future trend confirmation[29] - **Factor Construction Process**: 1. Odds are at 1.7 standard deviation[29] 2. Trend is at -1.4 standard deviation[29] 3. Crowding is at -0.8 standard deviation[29] - **Factor Evaluation**: The factor shows left-side buy signals but requires trend confirmation for stronger allocation[29] 3. Factor Name: Growth Factor - **Factor Construction Idea**: Represents high odds, moderate trends, and moderate crowding, suitable for standard allocation[32] - **Factor Construction Process**: 1. Odds are at 0.9 standard deviation[32] 2. Trend is at -0.2 standard deviation[32] 3. Crowding is at 0.1 standard deviation[32] - **Factor Evaluation**: The factor is recommended for standard allocation due to its balanced characteristics[32] 4. Factor Name: Small-Cap Factor - **Factor Construction Idea**: Characterized by low odds, strong trends, and high crowding, with high uncertainty[35] - **Factor Construction Process**: 1. Odds are at -0.7 standard deviation[35] 2. Trend is at 1.6 standard deviation[35] 3. Crowding is at 0.6 standard deviation[35] - **Factor Evaluation**: The factor is not recommended due to its high uncertainty and crowding[35] --- Factor Backtesting Results 1. Value Factor - **Odds**: 0.3 standard deviation - **Trend**: 0 standard deviation - **Crowding**: -1.3 standard deviation[27] 2. Quality Factor - **Odds**: 1.7 standard deviation - **Trend**: -1.4 standard deviation - **Crowding**: -0.8 standard deviation[29] 3. Growth Factor - **Odds**: 0.9 standard deviation - **Trend**: -0.2 standard deviation - **Crowding**: 0.1 standard deviation[32] 4. Small-Cap Factor - **Odds**: -0.7 standard deviation - **Trend**: 1.6 standard deviation - **Crowding**: 0.6 standard deviation[35]
七月配置建议:不轻易低配A股
GOLDEN SUN SECURITIES· 2025-07-02 12:56
Quantitative Models and Construction 1. Model Name: Odds Ratio + Win Rate Strategy - **Model Construction Idea**: This strategy combines the odds ratio and win rate metrics to allocate risk budgets across assets, aiming to optimize returns under historical data constraints [3][46] - **Model Construction Process**: - The odds ratio and win rate metrics are calculated for each asset based on historical data - The risk budgets derived from these two metrics are summed to form a composite score - Asset allocation is determined by the composite score, with higher scores receiving higher allocations - Current allocation recommendation: 11.5% equities, 2.2% gold, 86.3% bonds [3][46] - **Model Evaluation**: The model demonstrates stable performance with low drawdowns, making it suitable for risk-averse investors [3][46] 2. Model Name: Odds Ratio Enhanced Strategy - **Model Construction Idea**: Focuses on maximizing returns by overweighting high-odds assets and underweighting low-odds assets under a volatility constraint [40][41] - **Model Construction Process**: - Odds ratios are calculated for each asset - A fixed volatility constraint is applied to ensure risk control - Asset allocation is adjusted dynamically based on odds ratios - Current allocation recommendation: 15.6% equities, 2.9% gold, 81.5% bonds [40][41] - **Model Evaluation**: The strategy effectively balances risk and return, achieving consistent performance over time [40][41] 3. Model Name: Win Rate Enhanced Strategy - **Model Construction Idea**: Utilizes macroeconomic factors (e.g., monetary policy, credit, growth, inflation, and overseas conditions) to derive win rate scores for asset allocation [43][44] - **Model Construction Process**: - Win rate scores are calculated based on macroeconomic indicators - Asset allocation is determined by the win rate scores, favoring assets with higher scores - Current allocation recommendation: 6.6% equities, 1.7% gold, 91.7% bonds [43][44] - **Model Evaluation**: The strategy is robust in capturing macroeconomic trends, providing a defensive allocation approach [43][44] --- Model Backtesting Results 1. Odds Ratio + Win Rate Strategy - Annualized Return: 7.0% (2011–2025), 7.6% (2014–2025), 7.2% (2019–2025) - Maximum Drawdown: 2.8% (2011–2025), 2.7% (2014–2025), 2.8% (2019–2025) - Sharpe Ratio: 2.86 (2011–2025), 3.26 (2014–2025), 2.85 (2019–2025) [3][46][47] 2. Odds Ratio Enhanced Strategy - Annualized Return: 6.6% (2011–2025), 7.5% (2014–2025), 7.0% (2019–2025) - Maximum Drawdown: 3.0% (2011–2025), 2.4% (2014–2025), 2.4% (2019–2025) - Sharpe Ratio: 2.72 (2011–2025), 3.19 (2014–2025), 3.02 (2019–2025) [40][41][42] 3. Win Rate Enhanced Strategy - Annualized Return: 7.0% (2011–2025), 7.7% (2014–2025), 6.3% (2019–2025) - Maximum Drawdown: 2.8% (2011–2025), 2.3% (2014–2025), 2.3% (2019–2025) - Sharpe Ratio: 2.96 (2011–2025), 3.36 (2014–2025), 2.87 (2019–2025) [43][44][45] --- Quantitative Factors and Construction 1. Factor Name: Value Factor - **Factor Construction Idea**: Measures the relative attractiveness of value stocks based on odds, trends, and crowding metrics [18][20] - **Factor Construction Process**: - Odds: 0.2 standard deviations (higher indicates cheaper valuation) - Trend: -0.1 standard deviations (moderate level) - Crowding: -1.0 standard deviations (low crowding) - Composite Score: 1.0 (highest among all factors) [18][20] - **Factor Evaluation**: Strong trend and low crowding make it a top-performing factor [18][20] 2. Factor Name: Quality Factor - **Factor Construction Idea**: Focuses on high-quality stocks with favorable odds and low crowding, awaiting trend confirmation [20][21] - **Factor Construction Process**: - Odds: 1.4 standard deviations (high level) - Trend: -0.3 standard deviations (weak level) - Crowding: -0.8 standard deviations (low level) - Composite Score: 0.6 [20][21] - **Factor Evaluation**: Promising long-term potential but requires trend confirmation for stronger performance [20][21] 3. Factor Name: Growth Factor - **Factor Construction Idea**: Targets growth stocks with improving odds and moderate crowding [23][25] - **Factor Construction Process**: - Odds: 0.6 standard deviations (moderate level) - Trend: 0.02 standard deviations (neutral level) - Crowding: -0.1 standard deviations (moderate level) - Composite Score: 0.4 [23][25] - **Factor Evaluation**: Suitable for neutral allocation due to balanced metrics [23][25] 4. Factor Name: Small-Cap Factor - **Factor Construction Idea**: Captures small-cap stocks with strong trends but high crowding and low odds [26][28] - **Factor Construction Process**: - Odds: -0.5 standard deviations (low level) - Trend: 0.9 standard deviations (high level) - Crowding: 0.6 standard deviations (high level) - Composite Score: 0.0 [26][28] - **Factor Evaluation**: High uncertainty due to low odds and high crowding, requiring cautious approach [26][28] --- Factor Backtesting Results 1. Value Factor - Odds: 0.2 standard deviations - Trend: -0.1 standard deviations - Crowding: -1.0 standard deviations - Composite Score: 1.0 [18][20] 2. Quality Factor - Odds: 1.4 standard deviations - Trend: -0.3 standard deviations - Crowding: -0.8 standard deviations - Composite Score: 0.6 [20][21] 3. Growth Factor - Odds: 0.6 standard deviations - Trend: 0.02 standard deviations - Crowding: -0.1 standard deviations - Composite Score: 0.4 [23][25] 4. Small-Cap Factor - Odds: -0.5 standard deviations - Trend: 0.9 standard deviations - Crowding: 0.6 standard deviations - Composite Score: 0.0 [26][28]