Workflow
扩散模型
icon
Search documents
ICCV 2025|训练太复杂?对图片语义、布局要求太高?图像morphing终于一步到位
机器之心· 2025-07-18 00:38
Core Viewpoint - The article introduces FreeMorph, a novel training-free image morphing method that enables high-quality and smooth transitions between two input images without the need for pre-training or additional annotations [5][32]. Group 1: Background and Challenges - Image morphing is a creative task that allows for smooth transitions between two distinct images, commonly seen in animations and photo editing [3]. - Traditional methods relied on complex algorithms and faced challenges with high training costs, data dependency, and instability in real-world applications [4]. - Recent advancements in deep learning methods like GANs and VAEs have improved image morphing but still struggle with training costs and adaptability [4][5]. Group 2: FreeMorph Methodology - FreeMorph addresses the challenges of image morphing by eliminating the need for training, achieving effective morphing with just two images [5]. - The method incorporates two key innovations: spherical feature aggregation and prior-driven self-attention mechanisms, enhancing the model's ability to maintain identity features and ensure smooth transitions [11][32]. - A step-oriented motion flow is introduced to control the transition direction, allowing for a coherent and gradual morphing process [21][32]. Group 3: Experimental Results - FreeMorph has been evaluated against existing methods, demonstrating superior performance in generating high-fidelity results across diverse scenarios, including images with varying semantics and layouts [27][30]. - The method effectively captures subtle changes, such as color variations in objects or nuanced facial expressions, showcasing its versatility [27][30]. Group 4: Limitations - Despite its advancements, FreeMorph has limitations, particularly when handling images with significant semantic or layout differences, which may result in less smooth transitions [34]. - The method inherits biases from the underlying Stable Diffusion model, affecting accuracy in specific contexts, such as human limb structures [34].
入职小米两个月了,还没摸过算法代码。。。
自动驾驶之心· 2025-07-16 08:46
Core Viewpoint - The article discusses the current trends and opportunities in the autonomous driving industry, emphasizing the importance of skill development and networking for job seekers in this field [4][7][8]. Group 1: Job Market Insights - The article highlights the challenges faced by recent graduates in aligning their job roles with their expectations, particularly in the context of internships and entry-level positions [2][4]. - It suggests that candidates should focus on relevant experiences, even if their current roles do not directly align with their career goals, and emphasizes the importance of showcasing all relevant skills on resumes [6][7]. Group 2: Skill Development and Learning Resources - The article encourages individuals to continue developing skills in autonomous driving, particularly in areas like large models and data processing, which are currently in demand [6][8]. - It mentions the availability of various resources, including online courses and community support, to help individuals enhance their knowledge and skills in the autonomous driving sector [8][10]. Group 3: Community and Networking - The article promotes joining communities focused on autonomous driving and embodied intelligence, which can provide valuable networking opportunities and access to industry insights [8][10]. - It emphasizes the importance of collaboration and knowledge sharing within these communities to stay updated on the latest trends and technologies in the field [8][10].
ICML 2025|多模态理解与生成最新进展:港科联合SnapResearch发布ThinkDiff,为扩散模型装上大脑
机器之心· 2025-07-16 04:21
Core Viewpoint - The article discusses the introduction of ThinkDiff, a new method for multimodal understanding and generation that enables diffusion models to perform reasoning and creative tasks with minimal training data and computational resources [3][36]. Group 1: Introduction to ThinkDiff - ThinkDiff is a collaborative effort between Hong Kong University of Science and Technology and Snap Research, aimed at enhancing diffusion models' reasoning capabilities with limited data [3]. - The method allows diffusion models to understand the logical relationships between images and text prompts, leading to high-quality image generation [7]. Group 2: Algorithm Design - ThinkDiff transfers the reasoning capabilities of large visual language models (VLM) to diffusion models, combining the strengths of both for improved multimodal understanding [7]. - The architecture involves aligning VLM-generated tokens with the diffusion model's decoder, enabling the diffusion model to inherit the VLM's reasoning abilities [15]. Group 3: Training Process - The training process includes a vision-language pretraining task that aligns VLM with the LLM decoder, facilitating the transfer of multimodal reasoning capabilities [11][12]. - A masking strategy is employed during training to ensure the alignment network learns to recover semantics from incomplete multimodal information [15]. Group 4: Variants of ThinkDiff - ThinkDiff has two variants: ThinkDiff-LVLM, which aligns large-scale VLMs with diffusion models, and ThinkDiff-CLIP, which aligns CLIP with diffusion models for enhanced text-image combination capabilities [16]. Group 5: Experimental Results - ThinkDiff-LVLM significantly outperforms existing methods on the CoBSAT benchmark, demonstrating high accuracy and quality in multimodal understanding and generation [18]. - The training efficiency of ThinkDiff-LVLM is notable, achieving optimal results with only 5 hours of training on 4 A100 GPUs, compared to other methods that require significantly more resources [20][21]. Group 6: Comparison with Other Models - ThinkDiff-LVLM exhibits capabilities comparable to commercial models like Gemini in everyday image reasoning and generation tasks [25]. - The method also shows potential in multimodal video generation by adapting the diffusion decoder to generate high-quality videos based on input images and text [34]. Group 7: Conclusion - ThinkDiff represents a significant advancement in multimodal understanding and generation, providing a unified model that excels in both quantitative and qualitative assessments, contributing to the fields of research and industrial applications [36].
面试了很多端到端候选人,发现还是有很多人搞不清楚。。。
自动驾驶之心· 2025-07-13 13:18
Core Viewpoint - End-to-End Autonomous Driving is a key algorithm for intelligent driving mass production, with significant salary potential for related positions, and it has evolved into various technical branches since the introduction of UniAD [2] Group 1: Overview of End-to-End Autonomous Driving - End-to-End Autonomous Driving can be categorized into one-stage and two-stage approaches, with the core advantage being direct modeling from sensor input to vehicle planning/control, avoiding error accumulation seen in modular methods [2] - The emergence of BEV perception has bridged gaps between modular methods, leading to a significant technological leap [2] - The academic and industrial focus on End-to-End technology has raised questions about whether UniAD is the ultimate solution, indicating ongoing developments in various algorithms [2] Group 2: Challenges in Learning - The rapid development of End-to-End technology has made previous solutions inadequate, necessitating knowledge in multimodal large models, BEV perception, reinforcement learning, visual transformers, and diffusion models [4] - Beginners often struggle with the fragmented nature of knowledge and the overwhelming number of papers, leading to challenges in extracting frameworks and understanding industry trends [4] Group 3: Course Features - The newly developed course on End-to-End and VLA Autonomous Driving aims to address learning challenges by providing a structured approach to mastering core technologies [5] - The course emphasizes Just-in-Time Learning, helping students quickly grasp key concepts and expand their knowledge in specific areas [5] - It aims to build a framework for research capabilities, enabling students to categorize papers and extract innovative points [6] Group 4: Course Outline - The course includes chapters on the introduction to End-to-End algorithms, background knowledge, two-stage End-to-End methods, one-stage End-to-End methods, and practical applications [11][12][13] - Key topics include the evolution of End-to-End methods, the significance of BEV perception, and the latest advancements in VLA [9][14] Group 5: Target Audience and Expected Outcomes - The course is designed for individuals aiming to enter the autonomous driving industry, providing a comprehensive understanding of End-to-End technologies [19] - Upon completion, participants are expected to achieve a level equivalent to one year of experience as an End-to-End Autonomous Driving algorithm engineer, mastering various methodologies and key technologies [22]
「流匹配」成ICML 2025超热门主题!网友:都说了学物理的不准转计算机
机器之心· 2025-07-13 04:58
Core Viewpoint - The article discusses the emerging significance of Flow Matching technology in the field of generative AI, highlighting its connection to fluid dynamics and its potential to enhance model quality and stability [4][5][8]. Group 1: Flow Matching Technology - Flow Matching technology is gaining attention for its ability to address key elements in generative AI, such as quality, stability, and simplicity [5]. - The FLUX model has catalyzed interest in Flow Matching architectures that can handle various input types [6]. - Flow Matching is based on Normalizing Flows (NF), which gradually maps complex probability distributions to simpler ones through a series of reversible transformations [18]. Group 2: Relationship with Fluid Dynamics - The core concept of Flow Matching is derived from fluid dynamics, particularly the continuity equation, which emphasizes that mass cannot be created or destroyed [22][23]. - Flow Matching focuses on the average density of particles in a space, paralleling how it tracks the transition from noise distribution to data distribution [20][25]. - The process involves defining a velocity field that guides the transformation from noise to data, contrasting with traditional methods that start from particle behavior [24][25]. Group 3: Generative Process - The generative process in Flow Matching involves mapping noise to data through interpolation, where the model learns to move samples along a defined path [12][17]. - The method emphasizes the average direction of paths leading to high-probability samples, allowing for effective data generation [30][34]. - Flow Matching can be seen as a special case of diffusion models when Gaussian distribution is used as the interpolation strategy [41]. Group 4: Comparison with Diffusion Models - Flow Matching and diffusion models share similar forward processes, with Flow Matching being a subset of diffusion models [40]. - The training processes of both models exhibit equivalence when Gaussian distributions are employed, although Flow Matching introduces new output parameterization as a velocity field [35][44]. - The design of weight functions in Flow Matching aligns closely with those commonly used in diffusion model literature, impacting the model's performance [45].
端到端VLA这薪资,让我心动了。。。
自动驾驶之心· 2025-07-10 12:40
Core Viewpoint - End-to-End Autonomous Driving (E2E) is the core algorithm for intelligent driving mass production, marking a new phase in the industry with significant advancements and competition following the recognition of UniAD at CVPR [2] Group 1: E2E Autonomous Driving Overview - E2E can be categorized into single-stage and two-stage approaches, directly modeling from sensor data to vehicle control information, thus avoiding error accumulation seen in modular methods [2] - The emergence of BEV perception has bridged gaps between modular methods, leading to a significant technological leap [2] - The rapid development of E2E has led to a surge in demand for VLM/VLA expertise, with potential salaries reaching millions annually [2] Group 2: Learning Challenges - The fast-paced evolution of E2E technology has made previous learning materials outdated, necessitating a comprehensive understanding of multi-modal large models, BEV perception, reinforcement learning, and more [3] - Beginners face challenges in synthesizing knowledge from numerous fragmented papers and transitioning from theory to practice due to a lack of high-quality documentation [3] Group 3: Course Development - A new course titled "End-to-End and VLA Autonomous Driving" has been developed to address learning challenges, focusing on Just-in-Time Learning to help students quickly grasp core technologies [4] - The course aims to build a framework for research capabilities, enabling students to categorize papers and extract innovative points [5] - Practical applications are integrated into the course to ensure a complete learning loop from theory to practice [6] Group 4: Course Structure - The course consists of multiple chapters covering the history and evolution of E2E algorithms, background knowledge, two-stage and one-stage E2E methods, and the latest advancements in VLA [8][9][10] - Key topics include the introduction of E2E algorithms, background knowledge on VLA, and practical applications of diffusion models and reinforcement learning [11][12] Group 5: Target Audience and Outcomes - The course is designed for individuals with a foundational understanding of autonomous driving and aims to elevate participants to a level comparable to one year of experience as an E2E algorithm engineer [19] - Participants will gain a deep understanding of key technologies such as BEV perception, multi-modal large models, and reinforcement learning, enabling them to apply learned concepts to real-world projects [19]
扩散语言模型写代码!速度比自回归快10倍
量子位· 2025-07-10 03:19
Core Viewpoint - The article discusses the launch of Mercury, a new commercial-grade large language model based on diffusion technology, which can generate code at a significantly faster rate than traditional models. Group 1: Model Innovation - Mercury breaks the limitations of autoregressive models by predicting all tokens at once, enhancing generation speed [2] - The model allows for dynamic error correction during the generation process, providing greater flexibility compared to traditional models [4][20] - Despite using diffusion technology, Mercury retains the Transformer architecture, enabling the reuse of efficient training and inference optimization techniques [6][7] Group 2: Performance Metrics - Mercury's code generation speed can be up to 10 times faster than traditional tools, significantly reducing development cycles [8] - On H100 GPUs, Mercury achieves a throughput of 1109 tokens per second, showcasing its efficient use of hardware [9][13] - In benchmark tests, Mercury Coder Mini and Small achieved response times of 0.25 seconds and 0.31 seconds, respectively, outperforming many competitors [16] Group 3: Error Correction and Flexibility - The model incorporates a real-time error correction module that detects and corrects logical flaws in code during the denoising steps [21] - Mercury integrates abstract syntax trees (AST) from programming languages like Python and Java to minimize syntax errors [22] Group 4: Development Team - Inception Labs, the developer of Mercury, consists of a team of experts from prestigious institutions, including Stanford and UCLA, with a focus on improving model performance using diffusion technology [29][34]
筹备了半年!端到端与VLA自动驾驶小班课来啦(一段式/两段式/扩散模型/VLA等)
自动驾驶之心· 2025-07-09 12:02
Core Viewpoint - End-to-End Autonomous Driving is the core algorithm for the next generation of intelligent driving mass production, marking a significant shift in the industry towards more integrated and efficient systems [1][3]. Group 1: End-to-End Autonomous Driving Overview - End-to-End Autonomous Driving can be categorized into single-stage and two-stage approaches, with the former directly modeling vehicle planning and control from sensor data, thus avoiding error accumulation seen in modular methods [1][4]. - The emergence of UniAD has initiated a new wave of competition in the autonomous driving sector, with various algorithms rapidly developing in response to its success [1][3]. Group 2: Challenges in Learning and Development - The rapid advancement in technology has made previous educational resources outdated, creating a need for updated learning paths that encompass multi-modal large models, BEV perception, reinforcement learning, and more [3][5]. - Beginners face significant challenges due to the fragmented nature of knowledge across various fields, making it difficult to extract frameworks and understand development trends [3][6]. Group 3: Course Structure and Content - The course on End-to-End and VLA Autonomous Driving aims to address these challenges by providing a structured learning path that includes practical applications and theoretical foundations [5][7]. - The curriculum covers the history and evolution of End-to-End algorithms, background knowledge necessary for understanding current technologies, and practical applications of various models [8][9]. Group 4: Key Technologies and Innovations - The course highlights significant advancements in two-stage and single-stage End-to-End methods, including notable algorithms like PLUTO and DiffusionDrive, which represent the forefront of research in the field [4][10][12]. - The integration of large language models (VLA) into End-to-End systems is emphasized as a critical area of development, with companies actively exploring new generation mass production solutions [13][14]. Group 5: Expected Outcomes and Skills Development - Upon completion of the course, participants are expected to reach a level equivalent to one year of experience as an End-to-End Autonomous Driving algorithm engineer, mastering various methodologies and key technologies [22][23]. - The course aims to equip participants with the ability to apply learned concepts to real-world projects, enhancing their employability in the autonomous driving sector [22][23].
自动驾驶黄埔军校,一个死磕技术的地方~
自动驾驶之心· 2025-07-06 12:30
Core Viewpoint - The article discusses the transition of autonomous driving technology from Level 2/3 (assisted driving) to Level 4/5 (fully autonomous driving), highlighting the challenges and opportunities in the industry as well as the evolving skill requirements for professionals in the field [2]. Industry Trends - The shift towards high-level autonomous driving is creating a competitive landscape where traditional sensor-based approaches, such as LiDAR, are being challenged by cost-effective vision-based solutions like those from Tesla [2]. - The demand for skills in reinforcement learning and advanced perception algorithms is increasing, leading to a sense of urgency among professionals to upgrade their capabilities [2]. Talent Market Dynamics - The article notes a growing anxiety among seasoned professionals as they face the need to adapt to new technologies and methodologies, while newcomers struggle with the overwhelming number of career paths available in the autonomous driving sector [2]. - The reduction in costs for LiDAR technology, exemplified by Hesai Technology's price drop to $200 and BYD's 70% price reduction, indicates a shift in the market that requires continuous learning and adaptation from industry professionals [2]. Community and Learning Resources - The establishment of the "Autonomous Driving Heart Knowledge Planet" aims to create a comprehensive learning community for professionals, offering resources and networking opportunities to help individuals navigate the rapidly changing landscape of autonomous driving technology [7]. - The community has attracted nearly 4,000 members and over 100 industry experts, providing a platform for knowledge sharing and career advancement [7]. Technical Focus Areas - The article outlines several key technical areas within autonomous driving, including end-to-end driving systems, perception algorithms, and the integration of AI models for improved performance [10][11]. - It emphasizes the importance of understanding various subfields such as multi-sensor fusion, high-definition mapping, and AI model deployment, which are critical for the development of autonomous driving technologies [7].
一个气泡水广告,为何几十万人围观?原来整个都是Veo 3生成的
机器之心· 2025-07-06 06:06
Core Viewpoint - The article discusses the emergence of AI-generated content, particularly focusing on a viral advertisement created by the team "Too Short for Modeling," which showcases the advancements in AI video generation technology, specifically the Veo 3 model [2][3][4]. Group 1: AI Video Generation - The advertisement created by the team has garnered over 300,000 views on social media, highlighting the growing interest in AI-generated content [2]. - The Veo 3 model introduces a new "audio-visual synchronization" feature, significantly lowering the barriers to video creation and enhancing the practicality of AI in this field [4]. - The advertisement demonstrates impressive "character consistency," smoothly transitioning through 10 scenes within a minute while maintaining a high degree of stylistic uniformity [7]. Group 2: Technical Insights - The creators achieved this consistency through "hyper-specific prompting," which involves providing the AI model with detailed and context-rich instructions to minimize its creative freedom [9][10]. - Despite the advancements, AI-generated videos often face issues such as character appearance changes and object distortions, which are attributed to the underlying technology and training data limitations [8][14]. - The article outlines several reasons for these inconsistencies, including the model's reliance on probability rather than true understanding, challenges in maintaining coherence across frames, and the quality of training data [19][14]. Group 3: Creative Potential of AI - The article emphasizes the potential of AI as a "creative catalyst," suggesting that it can inspire innovative ideas, such as creating parallel universes for favorite movies [17][22]. - It encourages exploration of AI's capabilities in various creative domains, including website development and concept film production [24][25].