Workflow
生成式AI
icon
Search documents
开源AI革命刚刚开始,如何破解 “开放即脆弱” 悖论?丨ToB产业观察
Tai Mei Ti A P P· 2025-04-27 05:38
Core Insights - The emergence of open-source large models, such as DeepSeek-R1, has sparked a revolution in the AI industry, challenging the debate over the merits of open-source versus closed-source models [2][3] - Open-source AI is still in its early stages, with significant potential for industry transformation, but challenges related to security and commercialization remain [2][11] Group 1: Open-Source AI Impact - Open-source models are reshaping global industry dynamics, enabling lower-cost access to advanced AI capabilities for small and medium enterprises [3][4] - The cost of using DeepSeek-R1 for inference is only 1/30 of OpenAI's model, allowing developers to create applications at a fraction of the cost, such as a legal document generation tool that saw a 90% cost reduction [4] - The rise of "Model as a Service" (MaaS) is changing the service model of traditional cloud providers, making it easier for startups to deploy AI applications without building their own infrastructure [4][5] Group 2: Security Challenges - Security has become a major concern with the rise of open-source AI, with 57% of IT decision-makers citing privacy and data security as top issues [6][9] - High-profile security incidents, such as unauthorized access to Hugging Face's platform, highlight the vulnerabilities associated with open-source models [6][7] - DeepSeek has faced significant security threats, including DDoS attacks and data breaches, indicating the challenges that open-source platforms must address [7][8] Group 3: Future Considerations - The demand for computational power remains high, even with reduced costs, necessitating better observability and security measures from cloud service providers [5][9] - The integration of edge computing with AI is creating new security challenges, requiring companies to develop more complex security frameworks [10] - As data becomes a critical asset, ensuring data privacy and security in AI deployments is essential for companies [10][11]
企业培训 | 未可知 x 南方基金:DeepSeek在金融业的应用落地课程
近日, 未可知人工智能研究院副院长张孜铭老师受邀前往南方基金总部,开展了一场主题 为"DeepSeek+:企业的AI战略落地"的企业培训。 此次培训聚焦于 AI技术在企业战略中的应用与落地 ,旨在帮助南方基金的员工们深入理解AI 如何赋能企业运营、提升工作效率并推动业务创新,为企业的数字化转型提供有力支持。 张孜铭老师是未可知人工智能研究院副院长 ,北京大学与新加坡国立大学双硕士,著有 《DeepSeek使用指南》等多部作品,并参与起草了《生成式人工智能数据应用合规指南》等 行业标准。他在人工智能领域拥有深厚的学术背景和丰富的实践经验,为本次培训提供了坚实 的专业支撑。 培训中,张老师还分享了 未可知人工智能研究院在 AI培训、解决方案开发、咨询研究等方面 的丰富经验和成果。 他介绍了研究院的 专家团队 ,他们在人工智能领域拥有深厚的学术背景 和丰富的实践经验,为研究院的发展提供了坚实的人才支撑。 针对企业如何落地 AI战略,张老师提出了诸多建议。 他强调,企业应积极培养员工的AI技 能,掌握AI工具的使用方法;同时,要善于发现工作中的重复性任务,思考如何用AI替代,将 AI融入业务流程的标准化操作中。他还 ...
AI炒股靠谱吗 专家:散户需谨慎
Huan Qiu Wang· 2025-04-27 02:59
【环球网科技综合报道】随着ChatGPT、Deepseek等生成式AI聊天机器人在全球范围内掀起热潮,其应 用场景正不断拓展,如今甚至"跨界"至投资领域。近期,社交媒体上涌现出大量散户分享使用生成式AI 进行选股投资的经验,他们认为,相比咨询专业投资顾问,利用AI制定投资策略不仅成本低廉,而且 似乎颇具成效。然而,这一新兴趋势背后,是否真的隐藏着财富密码?还是潜藏着不为人知的风险? 然而,专家也提醒广大散户,在使用AI进行投资研究时,务必保持警惕,仔细核查AI模型所引用的资 料来源。由于AI训练数据可能存在时效性不足或质量参差不齐的问题,其生成的内容有时可能包含过 时信息甚至错误观点。更为严重的是,AI在处理复杂或小众内容时,还可能出现"幻觉"现象,即输出与 事实不符或逻辑混乱的信息。 "AI幻觉本质上源于模型对知识点的掌握不足或概率计算错误。"一位不愿具名的AI领域专家解释 道,"对于不具备相应专业知识的散户而言,很难在短时间内准确识别这些错误信息,从而可能误导其 投资决策。" 面对AI在投资领域的应用热潮,专家呼吁广大散户保持理性态度,既要看到AI在信息处理方面的潜 力,也要清醒认识到其局限性和潜在风险。 ...
环球网专访|商汤绝影与东风汽车深化合作 生成式AI重构智能驾驶新范式
Huan Qiu Wang· 2025-04-27 01:40
Core Viewpoint - The collaboration between SenseTime and Dongfeng Motor in the field of intelligent driving represents a deep integration of technology and industry, providing a practical model for the sector [1] Technological Breakthroughs - SenseTime showcased the R-UniAD solution based on the VLAR architecture, achieving near real-time interactive simulation and reducing the need for real data by two orders of magnitude [3] - The system demonstrated a perception accuracy of 98% compared to real data and improved simulation efficiency by five times over industry benchmarks [3] - The joint team has made significant progress in developing an end-to-end autonomous driving system, which features a "dual insurance" architecture combining a learning-based decision system with a rule-driven safety redundancy [3] Industry Collaboration - SenseTime has partnered with four car manufacturers, covering seven vehicle models, and plans to mass-produce an end-to-end solution based on the NVIDIA Thor platform by Q4 2025 [3] - The company has maintained a leading market share in intelligent cockpit software for five consecutive years, with cumulative deliveries exceeding 3.6 million units [3] Ecological Evolution - SenseTime introduced the first in-vehicle AI operating system, "Jueying Qianji," with a response latency of less than 300ms, supporting over 100 intelligent agents [6] - The upgraded "New Member" system showcases multimodal recognition and deep thinking capabilities, providing personalized services during real-time demonstrations [6] - The "Travel Medical" system integrates medical-grade health monitoring and connects with third-party medical services [8] Industry Observations - The recent regulatory adjustments are viewed as a turning point towards maturity rather than a pause in the intelligent transformation process [8] - The penetration rate of L2-level assisted driving reached 62% in 2024, with a 37% year-on-year increase in user complaints regarding functional safety [8] - The collaboration model between Dongfeng and SenseTime reflects a dual-track strategy of "independent control + open collaboration" in the intelligent transformation of traditional car manufacturers [8] Common Industry Challenges - The introduction of AI-native technologies like world models and reinforcement learning is breaking through the limitations of rule-driven systems [11] - There is an urgent need to establish compliant data collection systems and unified safety assessment standards within the industry [11] - The deep binding of AI companies and vehicle manufacturers may be a key pathway to address these common challenges [11]
腾讯研究院AI速递 20250427
腾讯研究院· 2025-04-26 15:50
生成式AI 一、 OpenAI 称刚刚对GPT 4o模型进行了升级,个性化更强 1. 优化了记忆存储机制,使AI能更智能地记忆和回忆对话信息; 2. STEM领域推理能力显著提升,可更好解决数学、科学、工程等复杂问题; 3. 对话风格更加主动自然,擅长引导对话方向,同时回复更贴近真实交谈。 https://mp.weixin.qq.com/s/oZVIP1hLb2ZZu5E9VNr5Zw 二、 实测免费DeepResearch!轻量版,速度更快重视脉络梳理 1. OpenAI发布基于o4-mini的轻量版DeepResearch,免费用户可使用,付费用户获额外使 用额度; 2. 轻量版与满血版相比,用时更短、内容更精简,但保持相近的智能水平; 3. 实测显示轻量版更注重梳理重点脉络,适合需要快速了解概况的场景。 https://mp.weixin.qq.com/s/0vZvNaAhEQQOqUfg3YiIdQ 2. 系统通过层级化分解和提交历史分析来理解代码全局结构,已索引3万个仓库,处理超40 亿行代码; 3. 使用方式简单,只需将github.com替换为deepwiki.com即可访问对应仓库的AI文档 ...
神州数码一季度收入和扣非净利双升
Zheng Quan Ri Bao Wang· 2025-04-26 03:47
Core Viewpoint - Digital China Group Co., Ltd. reported a revenue of 31.78 billion yuan for Q1 2025, marking an 8.6% year-on-year increase, with a net profit of 224 million yuan, up 10.4% [1] Group 1: Financial Performance - Overall revenue reached 31.78 billion yuan, reflecting an 8.6% year-on-year growth [1] - Non-GAAP net profit was 224 million yuan, showing a 10.4% increase compared to the previous year [1] - Operating cash flow recorded a net inflow of 2.73 billion yuan [1] Group 2: AI Strategy and Implementation - The company focused on AI technology transformation, enhancing its digital technology stack and launching multiple AI projects [1] - New direct customer opportunities increased by 78% year-on-year, with significant growth in flagship AI projects [1] - The company successfully implemented AI solutions in various industries, including retail, automotive, and manufacturing [1] Group 3: R&D and Product Development - R&D expenses grew by 9.3% year-on-year, emphasizing the commitment to generative AI and AI accessibility [2] - The launch of the DeepSeek version of the KunTai integrated machine and the KunTaiCube toolbox supports private deployment and offers cost-effective smart upgrade solutions [2] - The company secured an 800 million yuan order for its self-branded products from China Telecom for the 2024-2025 procurement project [2] Group 4: Automotive Industry Focus - Digital China introduced the "AI for Process Maturity Model" to outline the AI evolution blueprint for the automotive industry [2] - The company launched an "end-to-end one-stop AI workspace" and the "Digital China Intelligent Vehicle Solution" to enhance productivity and reduce costs for automotive enterprises [2] - Multiple "ten million-level" orders were won for digital marketing and data compliance projects from leading automotive companies [2]
晶圆厂,巨变
半导体行业观察· 2025-04-26 01:59
到2030年,全球半导体公司计划在新晶圆厂(fabs)建设上投资约1万亿美元,行业年收入也有望 突破1万亿美元。这一数字尚未包括生成式AI(gen AI)在中等乐观情境下可能带来的额外增长潜 力。除了满足日益增长的市场需求,这些投资也将增强各地区在半导体价值链上的供应弹性。 然而,尽管这场全球范围的大规模投资有望显著扩展半导体的产能版图,实现其预期效益的道路却 并不平坦。除了已公布的建设项目本身执行难度大之外,至少还有五大结构性障碍,特别在北美和 欧洲市场可能长期制约新增投资带来的实质进展:包括资本与运营成本结构、材料需求增长、关键 原材料及封装环节的离岸集中、物流与处理瓶颈,以及人才短缺等问题。若行业希望实现投资的长 期价值,就必须正视并逐一应对这些挑战。 底层半导体资本和运营成本动态 近年来,全球多国通过战略政策推动半导体制造和供应链的本土化。例如,美国推出《两党基础设 施法案》、《芯片与科学法案》、《通胀削减法案》及各州激励措施,试图吸引企业在本土建厂。 类似的激励措施也在欧洲、印度、日本、中国大陆、东南亚、韩国与中国台湾陆续推出,从而带动 全球晶圆厂建设热潮。 不过,从实际成本结构来看,美国本土建设先 ...
扎克伯格:社交已死,Facebook是内容平台
Founder Park· 2025-04-25 05:31
社交媒体已经变成了「媒体」,而不是「社交」。 我们不再是一个传统意义上的社交网络了,所以我们也不是在垄断社交网络。 扎克伯格在出席 Meta 反垄断案庭审作证时, 试图通过这种说法来削弱 Meta 在社交网络领域的垄断指控。这是一种策略性地重新定义, 目的是让 Meta 看起来不像是控制了一个特定市场,而是参与了一个更广泛、竞争更激烈的 媒体平台市场。 上周一,美国联邦贸易委员会(FTC)指控 Meta 收购 Instagram 和 WhatsApp 以此非法垄断社交媒体市场的案件在华盛顿开庭。该反垄断案在 2021 年 曾因对于 「个人社交网络服务」 的市场定义过于宽泛而被驳回。 据纽约客报道,Meta 创始人马克· 扎克伯格 在反垄断诉讼庭审期间表示,如今的社交媒体平台已今非昔比,Meta 近年来关注的重点是 「娱乐、了解世 界及发现新鲜事物的整体概念」。社交媒体已经逐渐从「连接人与人」演变成更类似传统媒体的形态,充斥着名人制作的推广视频、评论员对新闻事件的 评论内容、流行文化的聚合片段等。换句话说, 社交媒体已经变成了「媒体」,而不是「社交」。 以下为纽约客的评论文章《Mark Zuckerberg S ...
港股异动 | 美图公司(01357)涨近3% 机构料其年内订阅收入同比增超40% 付费率和用户增长双轮驱动
智通财经网· 2025-04-25 03:53
其中,该行指出,公司预计截至2月国内生活类场景下付费渗透率达到5.2%,突破此前5%的目标,主要 系生成式AI对传统功能的重构,比如用AI去双下巴功能取代传统的手动推图,实现对体验和效果的更 好满足,从而促进订阅转化率的提升。该行认为,公司基于长期沉淀的人像修图场景数据,通过低频功 能迭代+高频体验升级的模式,有利于用户留存与回流维持在健康水平。公司预计25年生活类付费会员 增长有望提供订阅收入弹性,维持生活类产品10%的长期订阅渗透率目标。 该行续指,根据SensorTower,1Q以来,定位欧美日韩市场的Airbrush、BeautyPlus MAU较为稳定;AI 换装等功能在东南亚出圈,带动海外版Wink、美颜相机MAU环比大幅增长。受益于较高付费意愿和高 级产品定位,公司预计截至24年Airbrush付费率远高于国内,而其他出海产品还在积极扩张新市场阶 段,短期尚未激进变现,对比成熟市场,远期付费率还有较大提升空间。 智通财经APP获悉,美图公司(01357)涨近3%,截至发稿,涨2.74%,报4.88港元,成交额9258.87万港 元。 中金发布研报称,近期,该行邀请美图管理层在2H24业绩后与投资 ...
从“AI追风者”到“亏损永动机”,云从科技困在理想国!
Sou Hu Cai Jing· 2025-04-25 02:07
曾几何时,商汤科技、旷视科技、云从科技、依图科技并称为"AI 四小龙",承载着AI行业的无限期 待。时光流转,"AI 六小龙""杭州七小龙"等名号层出不穷,"AI 四小龙"在时代的洪流中逐渐失色。 从财报数据来看,"AI 四小龙"曾经的辉煌已如过眼云烟。 商汤科技2024 年度财报显示,全年总营收 37.72 亿元,却伴随着 43.06 亿元的净亏损,自 2018 年至 2024 年累计亏损超 546 亿元;云从科技2024 年总营收约 3.98 亿元,归母净亏损达6.63亿元。 持续亏损"老大难" 被誉为"AI 四小龙"之一的云从科技,往昔头顶着明星企业的光环,承载着行业与资本的诸多期待。然 而,在高研发投入下,亏损却不断增加,面临着商业化的难题。 数据显示,2024年,云从科技实现营业总收入3.98亿元,同比减少36.60%;营业利润-6.49亿元,上年同 期为-6.55亿元;归属于母公司所有者的净利润-6.37亿元,上年同期为-6.43亿元;归属于母公司所有者 的扣除非经常性损益的净利润-6.63亿元,上年同期为-6.89亿元。 从更长时间跨度来看,自2017 年起至 2024 年,云从科技仿佛陷入了一 ...