Semiconductor
Search documents
未知机构:中信科技产业海外AI叙事或重回乐观情形重视海外算力链新一轮上涨机遇-20260202
未知机构· 2026-02-02 02:15
【中信科技产业】海外AI叙事或重回乐观情形,重视海外算力链新一轮上涨机遇! 核心判断 近期海外推理与训练算力需求同步走强,亚马逊云、谷歌云相继涨价,台积电上修Capex。 尽管当前AI应用大规模商业化能见度仍有限,但在模型与应用密集催化下,未来3–6个月海外算力需求有望进一步 上行,算力"泡沫论"担忧或阶段性缓解,产业链有望迎来新一轮修复。 推理侧:Agent落地 【中信科技产业】海外AI叙事或重回乐观情形,重视海外算力链新一轮上涨机遇! 核心判断 近期海外推理与训练算力需求同步走强,亚马逊云、谷歌云相继涨价,台积电上修Capex。 尽管当前AI应用大规模商业化能见度仍有限,但在模型与应用密集催化下,未来3–6个月海外算力需求有望进一步 上行,算力"泡沫论"担忧或阶段性缓解,产业链有望迎来新一轮修复。 推理侧:Agent落地抬升推理算力消耗 MoltBot等新一代Agent显著提升对电脑操作与复杂任务的处理能力,带来更高推理算力消耗。 Anthropic持续推出Claude Code、Agent Skills等产品,拓展Agent应用场景。 OpenRouter数据显示,2026年1月初以来Token调用量持 ...
烦人的内存墙
半导体行业观察· 2026-02-02 01:33
公众号记得加星标⭐️,第一时间看推送不会错过。 前所未有的无监督训练数据的可用性,以及神经网络的扩展规律,导致用于服务/训练低层逻辑模型 (LLM)的模型规模和计算需求出现了前所未有的激增。然而,主要的性能瓶颈正日益转移到内存 带宽上。 过去20年,服务器硬件的峰值浮点运算能力(FLOPS)以每两年3倍的速度增长,超过了DRAM和互 连带宽的增长速度,后两者分别仅以每两年1.6倍和1.4倍的速度增长。这种差距使得内存而非计算成 为人工智能应用(尤其是服务应用)的主要瓶颈。 本文分析了编码器和解码器Transformer模型,并展示了内存带宽如何成为解码器模型的主要瓶颈。 我们提出重新设计模型架构、训练和部署策略,以克服这一内存限制。 引言 近年来,训练大型语言模型 (LLM) 所需的计算量以每两年 750 倍的速度增长。这种指数级增长趋势 是人工智能加速器发展的主要驱动力,这些加速器致力于提升硬件的峰值计算能力,但往往以牺牲其 他部分(例如内存层次结构)的简化为代价。 然而,这些趋势忽略了训练和服务人工智能模型过程中一个新兴的挑战:内存和通信瓶颈。事实上, 许多人工智能应用的瓶颈并非计算能力,而是芯片内部/芯 ...
纤维芯片来了,衣服能变成随身电脑?
Ke Ji Ri Bao· 2026-02-01 23:36
芯片是现代电子技术的基石。目前,其信息处理能力依赖于在硅片上构建的高密度晶体管集成电 路。为了追求更强的算力,人类沿着摩尔定律不断推进制程工艺,推动了多个产业变革。随着可穿戴设 备、电子织物、脑机接口等新兴领域的蓬勃发展,人们希望能发展出不同于硬质硅基芯片的新型柔性信 息处理器件,以有效满足电子设备柔性化、轻量化、微型化的应用需求。 复旦大学彭慧胜/陈培宁团队打破传统芯片硅基研究范式,成功在柔软、弹性的高分子纤维内,制 造出大规模集成电路,创造出一种全新的信息处理器——纤维芯片。与传统芯片相比,这种新型芯片具 有高度柔软、适应拉伸扭曲等复杂形变、可编织等独特优势,有望为脑机接口、电子织物、虚拟现实等 新兴产业变革发展提供有力支撑。相关成果于1月22日发表于《自然》主刊。 芯片从"硬质"变"软线" 如何在细如发丝的纤维上实现强大的信息处理功能,而又不影响其柔软、可拉伸、可编织的本性? 这是纤维电子领域公认的"硬骨头"。 在智能可穿戴设备方兴未艾的今天,一个主要矛盾长期存在:我们的身体和衣物是柔软的,而赋予 它们"智能"的核心部件——芯片却是硬质的。这导致最终的智能织物、植入式设备都难以摆脱"外挂"硬 质信息处理 ...
Apple CEO sends blunt message iPhone 18 fans can’t ignore
Yahoo Finance· 2026-02-01 18:47
Core Viewpoint - Apple reported strong quarterly results but CEO Tim Cook indicated a need to reset expectations due to supply constraints and rising component costs [1][4][5]. Financial Performance - Apple achieved revenue of $143.8 billion, a 16% increase year over year, and diluted EPS of $2.84, up 19% year over year, with a net income of $42.1 billion [6]. - The gross margin was reported at 48.2%, exceeding guidance, and operating cash flow reached a record $53.9 billion [6]. - Segment sales included iPhone at $85.3 billion (+23%), Services at $30.0 billion (+14%), Mac at $8.4 billion (-7%), iPad at $8.6 billion (+6%), and Wearables/Home/Accessories at $11.5 billion (-2%) [6]. Supply Chain and Component Costs - Cook highlighted that Apple is in "supply chase mode" due to advanced chip constraints and rising memory prices, which are expected to persist for several years [2][8]. - The memory market is experiencing record demand, with companies like SanDisk seeing stock increases of 1,230% in the past six months [3]. - Apple is facing challenges in balancing supply and demand, with Cook noting that demand is currently outpacing Apple's planning [7][8]. Market Outlook - For the upcoming March quarter, Apple anticipates revenue growth of 13% to 16% year over year and a gross margin between 48% and 49% [6]. - Analysts remain optimistic about Apple's stock, with average price targets suggesting significant upside potential, ranging from $280 to $330 [19]. Pricing Strategy - Apple's pricing strategy for the iPhone has historically shown resilience, with demand remaining strong even at higher price points [14][15]. - Consumer sentiment indicates that while many perceive iPhones as overpriced, a notable percentage still consider them worth the investment despite financial constraints [17].
2026全球IPO展望:资本流向、市场选择与估值范式 | 氪睿研究院
Sou Hu Cai Jing· 2026-02-01 09:23
以下文章来源于氪睿研究院 从表面数据看,2026年全球IPO市场正在回升。多国交易所的上市储备项目增加,AI、硬科技、能源与先进制造成为高频关键词,市场开始重新讨论"IPO 窗口期"的打开。这一现象,容易被解读为资本市场风险偏好的修复。 但如果进一步拆解结构,会发现这一轮IPO并不符合以往"周期复苏"的典型特征。 首先,上市企业的类型发生了显著变化 能够顺利推进IPO的公司,集中于少数行业和赛道,且普遍具备高资本密度、长周期投入和强政策关联特征;而大量轻资产、应用导向或依赖叙事驱动的 企业,仍然停留在上市门外。 其次,IPO的定价逻辑正在发生位移 过去二十年,资本市场更倾向于为"增长潜力"定价;而在当前高利率与地缘政治结构化的背景下,资本开始优先评估企业的战略必要性、现金流可验证性 以及长期资本承载能力。 这意味着,IPO正在从一种"市场奖励机制",转变为一种战略资产筛选与定价机制。 在美国市场,算力、AI基础设施、航天与国防相关企业获得显著溢价,本质上反映的是资本对"未来关键基础设施"的提前定价;在中国市场,硬科技、新 质生产力与产业链关键环节加速进入资本市场,IPO更多承担的是产业升级与技术自主的制度功能 ...
英伟达黄仁勋否认不满OpenAI传闻 称正在推进融资
Huan Qiu Wang Zi Xun· 2026-02-01 02:56
来源:环球网 针对这一传闻,黄仁勋回应称:"我们将对OpenAI进行一笔巨额投资。我坚信OpenAI,他们所取得的成 就令人惊叹,无疑是当下最具影响力的公司之一。我非常享受与萨姆(OpenAI CEO萨姆·奥尔特曼)共 事。"他还补充道,目前萨姆正在推进这一轮融资,英伟达肯定会参与其中并投入大量资金,这极有可 能成为英伟达史上最大的一笔交易。(青山) | I INV VEHICHING I I DULUSURIA THE ECONOMIC TIMES tech | | --- | | Subscribe to ETPrime English Edition . Today's ePaper | | Home BUDGET DETPrime Markets [[Market Data Masterclass News Industry SME Politics Wealth Tech Al Careers Opinion NRI Pan | | Al Web Stories IT Tech & Internet Funding Startups Tech Bytes Newsletters . Blogs & ...
从铜到CPO:人工智能互连变了
半导体行业观察· 2026-02-01 02:25
公众号记得加星标⭐️,第一时间看推送不会错过。 一个简化的AI加速器架构展示了这两个领域如何共存。在计算层,加速器通过高带宽铜缆链路向上连 接到L1计算交换机。这些是典型的纵向扩展连接:短距离、高密度,并针对以最小延迟传输海量数 据进行了优化。L1交换机之间也通过铜缆互连,形成一个紧密耦合的网络结构,使得多个加速器在 软件层面上几乎可以像一个大型设备一样运行。 随着流量向上层级传输,它会汇聚到与更广泛的数据中心网络连接的二层网络交换机。在这个层级, 光插拔设备占据主导地位,因为系统必须支持更远的传输距离、更高的端口数量以及可扩展的带宽增 长。 这两个领域面临的日益严峻的挑战是,尽管电信号串扰器(SerDes)仍在不断发展,但其系统层面的 限制却日益增多。在硅芯片上,SerDes 的容量持续从 112G 扩展到 224G PAM4 及更高。然而,随 着数据速率的提升,包括封装、基板、PCB 走线、连接器和电缆在内的电气通道逐渐成为瓶颈。为 了在远距离传输中保持信号完整性,需要越来越强大的均衡和数字信号处理(DSP)能力,这会导致 每比特功耗增加,并增加热负载。 对于拥有数千条SerDes通道的大型AI交换机和加 ...
OpenAI and Anthropic Now Rival Public Software Giants for Revenue. That Makes These 3 Stocks Strong Buys for 2026.
The Motley Fool· 2026-02-01 02:15
Core Insights - The rising adoption of generative AI models from OpenAI and Anthropic is significantly impacting major cloud computing platforms, with trillions of dollars committed to future infrastructure projects by these companies [1] Group 1: OpenAI and Microsoft - OpenAI's partnership with Microsoft has provided the latter with a first-mover advantage in integrating generative AI, with ChatGPT being heavily utilized across Microsoft's Azure cloud services [3][5] - The increasing use of OpenAI's software has led to a surge in AI workloads on Azure, driving demand for incremental cloud services [4] Group 2: Amazon's Role in AI Infrastructure - Amazon Web Services (AWS) has entered a $38 billion GPU leasing deal to support OpenAI, highlighting the competitive landscape among cloud providers [7] - Amazon has invested $8 billion in Anthropic, positioning itself strategically in the AI sector, with Anthropic utilizing AWS's GPU clusters and custom-designed chips [8][9] - If Amazon's AI accelerators can compete effectively with Nvidia and AMD's GPUs, AWS could gain significant pricing power and increase customer retention [10][11] Group 3: Google Cloud's Position - Google Cloud has experienced impressive growth, with OpenAI and Anthropic as key customers, leveraging its computing power and custom chips [12][13] - Anthropic's use of Google Cloud's Tensor Processing Units (TPUs) is expected to enhance Google Cloud's competitive position in the AI infrastructure market [14] - As OpenAI addresses its capacity challenges, Google Cloud is likely to benefit from increased user adoption and ongoing data center expansion [15]
Is the Stalled Nvidia-OpenAI Megadeal AI’s First Domino to Fall?
Yahoo Finance· 2026-01-31 13:19
Advanced Micro Devices ( NASDAQ:AMD ): A multi-year deal to supply around 6 GW of GPU capacity, potentially valued up to $300 billion. OpenAI would also receive warrants for a 10% stake in AMD if certain targets are met.Microsoft ( NASDAQ:MSFT ) Azure: An incremental $250 billion commitment from OpenAI to purchase Azure cloud services for AI training and inference over several years.OpenAI’s position today is anchored in a dense network of partners and funding discussions that go far beyond any single Nvidi ...
7 Reasons Why Meta Platforms Is Arguably the Best AI Stock to Buy Right Now
The Motley Fool· 2026-01-31 08:45
Core Insights - Meta Platforms is positioned as a leading AI stock for 2026, driven by significant advancements in its advertising business and productivity enhancements through AI technologies [1] Group 1: Advertising Business Transformation - Meta's ad revenue increased by 24% year over year in Q4, reaching $58.1 billion, with AI playing a crucial role in enhancing revenue and profits [2] - The company revamped its ad ranking model and doubled GPU usage for AI training, resulting in a 3.5% rise in ad clicks on Facebook and over 1% increase in ad conversions on Instagram [3] Group 2: Productivity Improvements - The implementation of agentic coding has led to a 30% increase in output per engineer since early 2025, with power users experiencing an 80% year-over-year productivity boost [4] - CFO Susan Li indicated that growth is expected to accelerate in the latter half of 2026 [5] Group 3: Product Innovations - Sales of Meta's AI-powered smart glasses tripled in 2025, with CEO Mark Zuckerberg comparing their potential impact to that of smartphones [5][6] - Meta is committed to developing personal superintelligence, which is anticipated to significantly enhance user experience by understanding individual preferences and relationships [7] Group 4: AI Infrastructure Development - Meta established a new division, Meta Compute, aimed at creating custom silicon and energy sources for AI, which is expected to reduce reliance on third-party chips and lower energy costs [8][9] - The Andromeda ad retrieval engine is now compatible with various GPUs, including Nvidia and AMD, enhancing operational flexibility [9] Group 5: Business-to-Business Revenue Growth - Agentic AI is also contributing to B2B revenue, with Meta's business AIs on WhatsApp facilitating over 1 million weekly conversations between customers and businesses in Mexico and the Philippines [10][11] - Plans are in place to expand the availability of these AI agents to more markets in 2026 [11] Group 6: Reality Labs Financial Outlook - Reality Labs reported a $6 billion loss in Q3, which impacted overall profits, but losses are expected to stabilize in 2026, with a focus on AI glasses and wearables [12][13]