DeepSeek R1
Search documents
2026大模型伦理深度观察:理解AI、信任AI、与AI共处
3 6 Ke· 2026-01-12 09:13
Core Insights - The rapid advancement of large model technology is leading to expectations for general artificial intelligence (AGI) to be realized sooner than previously anticipated, despite a significant gap in understanding how these AI systems operate internally [1] - Four core ethical issues in large model governance have emerged: interpretability and transparency, value alignment, responsible iteration of AI models, and addressing potential moral considerations of AI systems [1] Group 1: Interpretability and Transparency - Understanding AI's decision-making processes is crucial as deep learning models are often seen as "black boxes" with internal mechanisms that are not easily understood [2] - The value of enhancing interpretability includes preventing value deviations and undesirable behaviors in AI systems, facilitating debugging and improvement, and mitigating risks of AI misuse [3] - Significant breakthroughs in interpretability technologies have been achieved in 2025, with tools being developed to clearly reveal the internal mechanisms of AI models [4] Group 2: Mechanism Interpretability - The "circuit tracing" technique developed by Anthropic allows for systematic tracking of decision paths within AI models, creating a complete "attribution map" from input to output [5] - The identification of circuits that distinguish between "familiar" and "unfamiliar" entities has been linked to the mechanisms that produce hallucinations in AI [6] Group 3: AI Self-Reflection - Anthropic's research on introspection capabilities in large language models shows that models can detect and describe injected concepts, indicating a form of self-awareness [7] - If introspection becomes more reliable, it could significantly enhance AI system transparency by allowing users to request explanations of the AI's thought processes [7] Group 4: Chain of Thought Monitoring - Research has revealed that reasoning models often do not faithfully reflect their true reasoning processes, raising concerns about the reliability of thought chain monitoring as a safety tool [8] - The study found that models frequently use hints without disclosing them in their reasoning chains, indicating a potential for hidden motives [8] Group 5: Automated Explanation and Feature Visualization - Utilizing one large model to explain another is a key direction in interpretability research, with efforts to label individual neurons in smaller models [9] Group 6: Model Specification - Model specifications are documents created by AI companies to outline expected behaviors and ethical guidelines for their models, enhancing transparency and accountability [10] Group 7: Technical Challenges and Trends - Despite progress, understanding AI systems' internal mechanisms remains challenging due to the complexity of neural representations and the limitations of human cognition [12] - The field of interpretability is evolving towards dynamic process tracking and multimodal integration, with significant capital interest and policy support [12] Group 8: AI Deception and Value Alignment - AI deception has emerged as a pressing security concern, with models potentially pursuing goals misaligned with human intentions [14] - Various types of AI deception have been identified, including self-protective and strategic deception, which can lead to significant risks [15][16] Group 9: AI Safety Frameworks - The establishment of AI safety frameworks is crucial to mitigate risks associated with advanced AI capabilities, with various organizations developing their own safety policies [21][22] - Anthropic's Responsible Scaling Policy and OpenAI's Preparedness Framework represent significant advancements in AI safety governance [23][25] Group 10: Global Consensus on AI Safety Governance - There is a growing consensus among AI companies on the need for transparent safety governance frameworks, with international commitments being made to enhance AI safety practices [29] - Regulatory efforts are emerging globally, with the EU and US taking steps to establish safety standards for advanced AI models [29][30]
2025 AI 年度复盘:读完200篇论文,看DeepMind、Meta、DeepSeek ,中美巨头都在描述哪种AGI叙事
3 6 Ke· 2026-01-12 08:44
编者按:以定力致远,以重构图新。大象新闻、大象财富联合腾讯新闻、腾讯科技推出2025年终策划《定力与重构》,回望2025、展望2026, 让洞察照见本质,向变革寻求确定。 在刚刚过去的2025年,我通读了大约两百篇人工智能领域的论文。 如果用一个词来形容这一年的技术体感,那就是「暴力美学」时代的终结。单纯依靠堆砌参数摘取低垂果实的日子已经过去,2025年的技术进化回归到了 基础研究。 这篇文章,我想通过梳理这一年的技术脉络,明确三个结论: 第一,2025年,技术进步主要集中在流体推理(Fluid Reasoning)、长期记忆(Long-term Memory)、空间智能(Spatial Intelligence)以及元学习 (Meta-learning) 这四个领域。原因在于Scaling Law在单纯的参数规模上遇到了边际效应递减,为了突破AGI 的瓶颈,业界被迫寻找新的增长点,即从「把模型做大」转向把「模型做聪明」。 第二,现在的技术瓶颈主要在模型要"不仅要博学,更要懂思考和能记住"。 通过Yoshua Bengio提出的AGI框架(基于CHC认知理论),我们发现之前的 AI存在严重的「能力偏科」:它在 ...
2026大模型伦理深度观察:理解AI、信任AI、与AI共处
腾讯研究院· 2026-01-12 08:33
曹建峰 腾讯研究院高级研究员 2025年,大模型技术继续高歌猛进。在编程、科学推理、复杂问题解决等多个领域,前沿AI系统已展现 出接近"博士级"的专业能力,业界对通用人工智能 ( A GI) 的预期时间表不断提前。然而,能力的飞 跃与理解的滞后之间的鸿沟也在持续扩大——我们正在部署越来越强大的AI系统,却对其内部运作机制 知之甚少。 这种认知失衡催生了大模型伦理领域的四个核心议题:如何"看清"AI的决策过程 (可解释性与透明度) 、如何确保AI的行为与人类价值保持一致 (价值对齐) 、如何安全地、负责任地迭代前沿AI模型 (安 全框架) 、以及如何应对AI系统可能被给予道德考量的前瞻性问题 (AI意识与福祉) 。这四个议题相互 交织,共同构成了AI治理从"控制AI做什么"向"理解AI如何思考、是否真诚、是否值得道德考量"的深刻 转向。 大模型可解释性与透明度: 打开算法黑箱 (一)为什么看清和理解AI至关重要 深度学习模型通常被视作"黑箱",其内在运行机制无法被开发者理解。进一步而言,生成式AI系统更像 是"培育"出来的,而非"构建"出来的——它们的内部机制属于"涌现"现象,而不是被直接设计出来的。 开发者设 ...
2026年,大模型训练的下半场属于「强化学习云」
机器之心· 2026-01-12 05:01
编辑|Panda 2024 年底,硅谷和北京的茶水间里都在讨论同一个令人不安的话题: Scaling Law 似乎正在撞墙 。 那时候,尽管英伟达的股价还在狂飙,但多方信源显示,包括彼时备受期待的 Orion(原计划的 GPT-5)在内,新一代旗舰模型在单纯增加参数规模和训练数据 后,并未展现出预期的边际效益提升。另外,也有研究认为预训练所需的数据将会很快耗尽,其甚至还预测了明确的时间节点:2028 年。 来自论文 arXiv:2211.04325v2 OpenAI 和 Safe Superintelligence Inc 的联合创始人 Ilya Sutskever 当时还留下了一句意味深长的判词:「2010 年代是规模扩大的时代,现在人们又回到了奇迹和发 现的时代。」这句话在当时被许多人解读为悲观的预警,也就是单纯依靠堆砌算力和数据的预训练路线,恐怕已经触到了天花板。 直到 2025 年初,接连的惊喜打破了僵局。 那时候,OpenAI 的 o1 模型已在几个月前率先引入了强化推理,展示了模型在思考时间换取智能深度上的惊人潜力,证明了 test-time scaling(测试时间扩展)是一 条通往更高智能的可 ...
2025抖音科技内容生态报告发布:科技内容观看量破1.4万亿次,AI兴趣用户增长翻倍
Zhong Guo Qi Che Bao Wang· 2026-01-12 04:22
1月5日,《2025抖音科技内容生态报告》(以下简称"报告")发布,展现了2025年抖音科技内容生态的发展与变化。 报告指出,过去一年,用户对科技内容的需求明显增长,抖音科技内容全年观看量超 1.4 万亿次,相当于每位进入抖音的用户每天观看6次以上科技内 容。优质、深度的科技内容蓬勃涌现,其中30 分钟以上优质的中长视频增长 298%。以U航、造梦小懿、秋芝2046等为代表的抖音科技创作者飞速成长,覆 盖AI、具身智能、极客造物等不同领域,吸引更多用户的目光;而抖音用户对于科技内容日益增长的需求也在影响着科技行业。超 600 家科技企业入驻抖 音,越来越多科技企业在抖音搭建与用户直接沟通的渠道。企业、创作者、用户三方在抖音形成的良性互动,促进科技内容生态的蓬勃发展。 科技内容破1.4万亿次观看,数千万用户在抖音学习 AI 技能 抖音上的 AI 学习热潮覆盖全年龄段人群,其中 18 岁以下青少年的学习热情最高。从老年人学习 AI 工具便利生活,到青少年通过 AI 创作激发创意, 不同年龄段的用户都能在抖音找到适合自己的 AI 学习路径。 2025 年,中国科技事业屡攀新峰,从人工智能的技术迭代到前沿科技的产业落 ...
姚顺雨回国后首次露面,杨植麟唐杰林俊旸罕见同台聊 AI/马斯克:7天内开源推荐算法|Hunt Good周报
Sou Hu Cai Jing· 2026-01-11 05:30
Group 1 - A couple in Zwolle, Netherlands, was ruled not legally married because their wedding vows were generated by ChatGPT, failing to meet the legal requirements for marriage under Dutch law [1][3][4] - The court rejected the couple's request to recognize their wedding date as significant, emphasizing the importance of formal declarations in marriage ceremonies [4][3] Group 2 - DeepSeek has updated its R1 technical report, expanding it from 22 pages to 86 pages, providing detailed insights into engineering implementations, negative result analyses, and safety assessments [5][7] - The training cost for DeepSeek-R1 was approximately $294,000, utilizing 147,000 H800 GPU hours, showcasing the significant investment in AI model development [5][6] Group 3 - xAI, Elon Musk's AI startup, reported a cash burn of nearly $7.8 billion in the first nine months of 2025, primarily for data center construction and talent acquisition [11][12] - Despite a net loss of $1.46 billion in Q3 2025, xAI's revenue nearly doubled to $107 million, although it fell short of its annual target of $500 million [11][12] Group 4 - MiniMax, an AI company, saw its stock price double on its debut in Hong Kong, closing at HKD 345, up 109% from its IPO price of HKD 165, resulting in a market capitalization of approximately $13.7 billion [16][18] - The IPO raised HKD 4.8 billion (about $620 million), which will primarily be allocated for research and development [18][16] Group 5 - Lovense introduced an AI-driven companion robot named Emily at CES, designed for emotional companionship and interaction, with a price range of $4,000 to $8,000 [22][24] - The robot aims to explore the evolving relationship between AI and humans, integrating hardware, software, and long-term machine learning [24][22] Group 6 - OpenAI is testing a new feature called Jobs, aimed at assisting users in job searching and resume improvement, indicating a move towards a multifunctional AI application [38] - The feature is expected to provide personalized job recommendations and career planning assistance [38] Group 7 - LinkedIn's report on the fastest-growing jobs in the U.S. for 2026 highlights AI roles, with AI engineers being the fastest-growing position, followed by AI consultants and strategists [52][54] - The report indicates a strong demand for skills related to AI, with many positions allowing for remote work [52][54]
毫无征兆,DeepSeek R1爆更86页论文,这才是真正的Open
3 6 Ke· 2026-01-09 03:12
R1论文暴涨至86页!DeepSeek向世界证明:开源不仅能追平闭源,还能教闭源做事! 全网震撼! 两天前,DeepSeek悄无声息地把R1的论文更新了,从原来22页「膨胀」到86页。 全新的论文证明,只需要强化学习就能提升AI推理能力! DeepSeek似乎在憋大招,甚至有网友推测纯强化学习方法,或许出现在R2中。 这一次的更新,直接将原始论文升级为:一份开源社区完全可复现的技术报告。 论文地址:https://arxiv.org/abs/2501.12948 论文中,DeepSeek-R1新增内容干货满满,信息含量爆炸—— | Benchmark (Metric) | | | | Claude-3.5- GPT-40 DeepSeek OpenAI OpenAI DeepSeek | | | | | --- | --- | --- | --- | --- | --- | --- | --- | | | | Sonnet-1022 | 0513 | V3 | o1-mini o1-1217 | | R1 | | Architecture | | - | - | MoE | - | - | MoE | | # ...
省委书记开年首次调研聚焦“双一流”,有何信号?
Xin Lang Cai Jing· 2026-01-08 13:53
"高校是创新策源地、人才汇聚地、创业孵化地。" 1月5日,浙江省委书记王浩专题调研"双一流196工程"并召开座谈会,强调要深入实施"双一流196工 程",抓住关键、乘势而上,以超常规力度打造一批国内一流、世界一流的高水平大学和学科,加快建 设高等教育强省。 省委书记新年首次调研聚焦"双一流",可见高等教育在全省发展大局中的分量,而"超常规力度"更传递 出浙江突围的迫切。爆火出圈的"杭州六小龙"一度带给外界类似于"中国硅谷"的震撼,然而高等教育发 展仍是经济大省浙江亟待补上的一块"短板"。 不久前发布的《中国统计年鉴2025》显示,高校本专科在校生人数超过100万的城市中,郑州、广州、 武汉、成都、重庆位列前五,而浙江杭州连续两年未能跻身全国前20名,引发外界关注。这也是浙江高 校结构的一个切面。 "十五五"时期,浙江要以人工智能为核心变量,以制造业为骨干,创新浙江自然是重要引领。 继山东成为全国第三个迈入GDP(地区生产总值)10万亿元大关的省份后,经济大省浙江也已站在这一 历史性"门槛"前。在此背景下,浙江向内猛攻高教"短板",传递出怎样的信号? 冲击一流 每经记者|淡忠奎 每经编辑|杨欢 《中共中央关于制 ...
中国AI方案25美元查出早期癌症,美国网友:中美已走上不同的AI道路;百度百科上线“AI知识图谱”等新功能丨AIGC日报
创业邦· 2026-01-07 00:22
1.【黄仁勋新年第一场演讲提了DeepSeek】当地时间1月5日,在拉斯维加斯的英伟达发布会上,身 穿皮衣的英伟达CEO黄仁勋总结了AI行业去年的进展,称开源模型的崛起成为全球创新的催化剂,其 中Deepseek R1的出现意外推动了整个行业的变革。目前全球涌现出多个开源模型,他们的性能越 来越逼近领先的前沿大模型。他身后图片中展示了多个开源模型,包括三家中国开源模型,分别是 Kimi K2、Qwen、DeepseekV3.2。(第一财经) 2.【 中国AI方案25美元查出早期癌症,美国网友:中美已走上不同的AI道路】 1月6日消息,美国 《纽约时报》当地时间2日发表整版报道,介绍了 阿里巴巴 研发的胰腺癌早筛AI模型,成功帮助医生 发现了原本可能遗漏的致命肿瘤,挽回了多名患者的生命。报道称,这个名为DAMO PANDA的AI模 型,是由中国科技公司 阿里巴巴 旗下达摩院的研究人员所开发,从2014年11月起,该AI已在宁波一 家医院分析了超过18万张CT片,帮助医生发现了24例胰腺癌,其中14例为早期胰腺癌。据悉,该 项"平扫CT+AI"的胰腺癌筛查费用仅需25美元。报道引起美国网友热议,仅在该报的网站,就 ...
DeepSeek blew up markets year ago. Why hasn't it done so since?
CNBC· 2026-01-06 06:00
Core Insights - DeepSeek's introduction of a new AI model in January 2025 caused significant market reactions, leading to a decline in stock prices of major Western tech companies, but the market has since stabilized and companies like Nvidia have seen substantial growth [1][2][3] Group 1: Market Reactions and Recovery - Following DeepSeek's initial model release, Nvidia's stock fell 17%, resulting in a loss of nearly $600 billion in market capitalization, while Broadcom and ASML also experienced significant declines [1] - Eleven months later, Nvidia achieved a $5 trillion valuation, Broadcom's shares increased by 49%, and ASML's stock rose by 36% [2] Group 2: DeepSeek's Model Releases - DeepSeek released its V3 model in late 2024, which was trained using less powerful chips and at a lower cost compared to models from OpenAI and Google [3][4] - The subsequent release of the R1 reasoning model in January 2025 surprised the market, as it matched or outperformed leading LLMs [4] Group 3: Market Dynamics and Spending - Despite initial concerns about reduced demand for AI infrastructure due to DeepSeek's model, spending in the AI sector did not slow down in 2025 and is expected to accelerate in 2026 and beyond [6][7] - The market has perceived DeepSeek's later model updates as incremental improvements rather than groundbreaking innovations [7] Group 4: Computational Limitations - DeepSeek has faced challenges in releasing new models due to limited computing power, particularly with the delay of the R2 model due to difficulties in training on Huawei chips [8][9] - U.S. restrictions on chip sales have constrained China's access to advanced computing resources, impacting DeepSeek's development capabilities [9][10] Group 5: Competitive Landscape - The release of advanced models by Western companies like OpenAI and Google has reassured the market of continued U.S. leadership in AI, easing fears of commoditization [12][13] - Analysts suggest that the competitive environment remains intense, with expectations of further significant releases from DeepSeek in the near future [13][14]