Workflow
量子隧穿效应
icon
Search documents
从光伏到氢能,2025年诺奖暗藏玄机
Group 1: Nobel Prize Winners - The 2025 Nobel Prize in Physics was awarded to John Clarke, Michel H. Devoret, and John M. Martinis for their contributions to observing macroscopic quantum tunneling effects and energy quantization in circuits [1] - The 2025 Nobel Prize in Chemistry was awarded to Yoshinori Tokura, Richard Robb, and Omar M. Yaghi for their work in the development of metal-organic frameworks (MOFs) [1] Group 2: Quantum Tunneling Effect - The quantum tunneling effect allows microscopic particles to pass through energy barriers, which is likened to "passing through walls" in classical physics [7] - This year's Nobel Prize in Physics highlights the observation of quantum tunneling at a macroscopic scale, potentially enabling advancements in quantum technologies such as quantum cryptography and quantum computing [9][10] - The quantum tunneling effect is fundamental in the photovoltaic industry, particularly in the development of TOPCon solar cells, which utilize this effect to enhance energy conversion efficiency [10][11][12] Group 3: Metal-Organic Frameworks (MOFs) - MOFs are new molecular structures that allow gases and chemicals to flow through them, with applications in water extraction, carbon capture, and gas storage [14] - The hydrogen energy sector is exploring MOFs for their potential in hydrogen storage, with recent research indicating a MOF material capable of storing hydrogen at a density comparable to high-pressure storage [15][16] - A research team has developed a scalable process for creating large MOF electrodes, which could significantly reduce energy consumption in hydrogen production through water electrolysis [16]
从光伏到氢能,2025年诺奖暗藏玄机
21世纪经济报道· 2025-10-10 04:21
Group 1: Nobel Prize Insights - The 2025 Nobel Prize in Physics was awarded to John Clarke, Michel H. Devoret, and John M. Martinis for their contributions to the macroscopic observation of quantum tunneling effects and energy quantization in circuits [1][8] - The 2025 Nobel Prize in Chemistry was awarded to Shinobu Kitagawa, Richard Robeson, and Omar M. Yaghi for their work in the development of metal-organic frameworks (MOFs) [1][8] - This year's Nobel Prizes reflect a shift from traditional "zero to one" discoveries to "one to ninety-nine" technological advancements and applications [8][9] Group 2: Quantum Tunneling Effect - Quantum tunneling allows microscopic particles to pass through energy barriers, akin to "walking through walls" in the quantum realm [10][11] - The awarded research demonstrates that quantum tunneling can be observed on a macroscopic scale, potentially enabling advancements in quantum technologies such as quantum cryptography and quantum computing [10][11] - The quantum tunneling effect is already utilized in photovoltaic technologies, particularly in TOPCon solar cells, which have gained significant market share [11][12] Group 3: Metal-Organic Frameworks (MOFs) - MOFs are new molecular structures that allow gases and chemicals to flow through them, enabling applications such as water extraction from air and carbon dioxide capture [13][14] - MOFs are seen as ideal templates for carbon materials, playing a crucial role in adsorption and separation, thus expanding their potential in energy, catalysis, and materials science [14][15] - Recent research indicates that a specific MOF material has high hydrogen storage potential, achieving a storage density comparable to 70MPa high-pressure tanks [14][15]
从光伏到氢能 2025年诺奖暗藏“能源革命”玄机
Group 1: Nobel Prize Highlights - The 2025 Nobel Prize in Physics was awarded to John Clarke, Michel H. Devoret, and John M. Martinis for their contributions to observing macroscopic quantum tunneling effects and energy quantization in circuits [1] - The 2025 Nobel Prize in Chemistry was awarded to Shinobu Kitagawa, Richard Robeson, and Omar M. Yaghi for their work in the development of metal-organic frameworks (MOFs) [1] Group 2: Quantum Tunneling Effect - Quantum tunneling allows microscopic particles to pass through energy barriers, a phenomenon that can potentially enhance photovoltaic efficiency beyond theoretical limits [2][6] - The recent Nobel Prize in Physics demonstrated that quantum tunneling can be observed at a macroscopic scale, paving the way for advancements in quantum technologies such as quantum cryptography and quantum computing [3][6] - Quantum tunneling is already integral to the photovoltaic industry, particularly in technologies like TOPCon solar cells, which utilize tunneling mechanisms to improve energy conversion efficiency [4][5] Group 3: Metal-Organic Frameworks (MOFs) - MOFs are recognized for their potential in hydrogen storage and energy applications due to their unique porous structures and adjustable adsorption properties [2][6] - Recent research highlighted a MOF material with a hydrogen storage capacity of 6.5% by weight, comparable to high-pressure storage solutions, indicating significant advancements in hydrogen energy storage [7] - The development of scalable MOF electrodes for water electrolysis has shown promise for efficient hydrogen production, with low energy consumption and long operational stability [7]
从光伏到氢能,2025年诺奖暗藏“能源革命”玄机
Group 1: Nobel Prize Insights - The 2025 Nobel Prizes in Physics and Chemistry highlight advancements in technology and applications rather than purely original discoveries [1][2] - The Physics Prize recognizes contributions to quantum tunneling effects, which could enhance future photovoltaic mechanisms and quantum technologies [2][3] - The Chemistry Prize focuses on metal-organic frameworks (MOFs), which have potential applications in hydrogen storage and gas capture [2][6] Group 2: Quantum Tunneling and Photovoltaics - Quantum tunneling effects are foundational in semiconductor applications and have been utilized in various photovoltaic devices, including TOPCon solar cells [4][5] - TOPCon solar cells, which leverage quantum tunneling, have become mainstream in the photovoltaic market due to their high efficiency [4][6] - The recent Nobel recognition enhances understanding of quantum tunneling, potentially aiding breakthroughs in photovoltaic efficiency [6] Group 3: Metal-Organic Frameworks and Hydrogen Energy - Metal-organic frameworks are seen as ideal materials for hydrogen storage, with a recent study showing a storage capacity of 6.5% by weight [7] - Research indicates that MOFs can facilitate efficient hydrogen storage and have applications in large-scale green hydrogen production [7] - The unique properties of MOFs, such as their flexible lattice structure, expand their potential in energy, catalysis, and materials science [6][7]
“提前”到来的认可 对量子力学奠基性工作的肯定
Ke Ji Ri Bao· 2025-10-09 08:40
"这3位科学家获得诺贝尔物理学奖实至名归。"湖南师范大学物理与电子科学学院教授彭智慧说,他们 的研究证实,即使在宏观尺度的超导电路中,也能直接观测到量子隧穿效应。这一发现打破了"量子行 为仅存在于微观世界"的旧有认知,为量子技术的实际应用开辟出关键路径。 范桁认为,他们所发现的、基于宏观超导约瑟夫森结的量子效应,构成了当今超导量子计算的物理基 础。目前,超导量子计算发展迅速,无论在可扩展性还是稳定性方面都展现出巨大潜力,而这三位获奖 科学家,正是这一领域的重要奠基人。 其中,约翰·克拉克和米歇尔·德沃雷曾获得我国颁发的2021年度墨子量子奖。"给这两位颁发墨子量子 奖,主要是表彰他们作为领军人物开创了超导量子电路。"中国科学技术大学教授、墨子量子科技基金 会秘书长陆朝阳说。 陆朝阳介绍,约翰·克拉克在超导和超导电子学方面作出了重大贡献,特别是在超导量子干涉器件的开 发和应用领域。他的研究团队首次观测到介观系统中能级的量子化,并在实验上证实了就像原子一样, 单个约瑟夫森结也具有分立的能级。而米歇尔·德沃雷在利用超导电路来实现量子信息处理方面作出了 重要贡献。 得知诺奖授予量子力学领域的研究者,中国科学院物理研究 ...
唠科|让量子现象“肉眼可见”——2025年诺贝尔物理学奖成果解读
Xin Hua She· 2025-10-08 08:30
2025年 诺贝尔奖项揭晓 唠科工作室 让量子现象"肉眼可见" 2025年诺贝尔物理学奖成果解读 图片来源:瑞典皇家科学院 ©,插画 / 约翰·亚尔内斯塔德 获奖者 ... 约翰 · 克拉克 1942年出生于英国 美国加利福尼亚大学伯克利分校教授 获奖成果 在F 0 res 宏观量子力学隧穿效应 和能量量子化 评奖委员会 怎么说 CG 今年的诺贝尔物理学奖成果 为开发下一代量子技术提供 了机遇,包括量子密码学、 量子计算机和量子传感器。 H 让量子现象"肉眼可见" 三名量子物理学家的开创性发 和 让我们"看见"单口方在 九,江苏IJ 自九 目不同 于微观领域的量子现象,也为 新一代量子技术的发展奠定了 坚实基础。 量子力学以 "怪诞"和"反直觉" 的现象而闻名。 米歇尔 · H · 德沃雷 1953年出生于法国 美国耶鲁大学和 加利福尼亚大学圣巴巴拉分校教授 约翰 · M · 马蒂尼斯 出生于1958年 美国加利福尼亚大学圣巴巴拉分校教授 比如,在日常生活中, 当我们把球扔向墙壁时, 每次都会反弹回来。 然而在微观世界, 单个粒子有时却会"穿墙而过", 这种量子力学现象被称为量子隧穿效应。 hen you t ...
科普|让量子现象“肉眼可见”——2025年诺贝尔物理学奖成果解读
Xin Hua She· 2025-10-07 16:12
新华社斯德哥尔摩10月7日电 科普|让量子现象"肉眼可见"——2025年诺贝尔物理学奖成果解读 新华社记者郭爽 张兆卿 朱昊晨 量子力学诞生百年之际,瑞典皇家科学院7日将2025年诺贝尔物理学奖授予约翰·克拉克、米歇尔·H·德沃 雷和约翰·M·马蒂尼斯三名量子物理学家。正是他们在前人百年探索基础上的开创性发现,让我们"看 见"曾只存在于微观领域的量子现象,也为新一代量子技术的发展奠定了坚实基础。 今年获奖的三名量子物理学家正是在这些先行者的成果基础上,通过"约瑟夫森结"实验首次证实,当超 导体中的"库珀对"集体呈现量子态时,整个电路能像单个粒子一样实现隧穿跃迁,打破了量子效应仅存 在于微观世界中的传统认知。 通向新的世界 上世纪80年代,三名获奖科学家在加利福尼亚大学伯克利分校进行了一系列开创性实验。他们构建了一 个包括两个超导体的电路,并用一层完全不导电的薄材料将这些超导体分开。在这项实验中,他们展示 了一种现象:超导体中所有带电粒子都可以表现出"整齐划一"的行为,就好像它们是充满整个电路的单 个粒子一样。 这个系统起初被"困在"一个没有电压、但有电流在超导体中流动的状态中。在实验中,该系统展现出量 子特性 ...
量子电路突破荣获诺贝尔物理学奖
半导体行业观察· 2025-10-07 13:47
据央视新闻消息,当地时间10月7日,瑞典皇家科学院决定将2025年诺贝尔物理学奖授予科学家约翰·克拉克、麦克·H·德沃雷特、约翰·M·马蒂尼,以表彰 他们"发现电路中的宏观量子力学隧道效应和能量量子化"。获奖者将平分1100万瑞典克朗(约合836万元人民币)奖金。 利用量子"隧穿"(tunnelling),电子设法突破能量屏障。 他们的工作证明,隧穿效应不仅可以在量子世界中重现,而且可以在"现实世界"的电路中重现。科学家们利用这些知识来制造现代量子芯片。 据了解,约翰·克拉克出生于英国剑桥,在剑桥大学获得博士学位;马 马蒂尼 出生于美国,在加州大学伯克利分校获得博士学位; 德沃雷特 出生于法国 巴黎,在巴黎第十一大学(现巴黎萨克雷大学)获得博士学位。 三人设计了实验,实验中使用了由绝缘层隔开的"约瑟夫森结"超导电路。超导体是一种在特定温度下电阻消失的材料。他们证实,穿过超导体的带电粒子 的行为类似于填充整个电路的"单个粒子",并表现出量子隧穿效应,穿过绝缘层移动到另一侧。此外,他们还观察到了能量量子化,即电路只吸收或释放 特定数量的能量。 诺贝尔委员会表示:"当今使用的所有先进技术都依赖于量子力学,包括手机、 ...