Workflow
NVLink
icon
Search documents
Will Data Center Unit Help NVIDIA Reach Its $65B Q4 Revenue Goal?
ZACKS· 2026-02-13 14:10
Key Takeaways NVIDIA targets $65B in Q4 revenues after posting a record $57.01B in Q3 fiscal 2026.The data center unit generated $51.22B in Q3, up 66% year over year.Analysts see NVIDIA reaching $65.56B in Q4, driven by AI chip and Blackwell demand.NVIDIA Corporation (NVDA) is set to report its fourth-quarter fiscal 2026 results on Feb. 25, and it would be no surprise if the company reaches another sales milestone and surpasses the $65 billion target. NVDA has been setting new sales records for the past few ...
中金 | AI十年展望(二十七):越过“遗忘”的边界,模型记忆的三层架构与产业机遇
中金点睛· 2026-02-12 23:36
中金研究 大模型的演进史,本质上是一部与"遗忘"抗争的历史。 当我们惊叹于模型的推理能力时,往往忽视了一个重要短板: 在缺乏记忆留存的架构下,模型 每一次对历史信息的处理,本质上都是一次昂贵的"重复计算"。 这种以高昂算力对抗遗忘的粗放模式,正面临着显存墙与上下文窗口的物理极限。我 们认为,2026年及之后的AI Infra主战场将增加"模型记忆"这一极。 何为模型记忆?如何理解短期、中期、长期记忆三层记忆系统对应的软硬件需求? 如何对应模型训练、推理、Agent场景理解记忆分层系统?我们将在本报告中予以解答。 点击小程序查看报告原文 Abstract 摘要 短期记忆构成大模 型单 次推理的"当前视野"。 作为高频读写、对延迟极度敏感的"热数据",其核心矛盾在于KV Cache对显存容量与带宽的双重挤占。软 件端通过PagedAttention显存虚拟化与PD分离调度进行优化,并探索出无限注意力(Infini-attention)等前沿架构以支撑百万Tokens上下文窗口。这一逻辑 直接锚定了HBM与片上SRAM作为突破"显存墙"与"延迟墙"的重要硬件要素。 中 期记忆保障跨会话的情景连续性,是Agent的基 ...
从“更快”到“更省”:AI下半场,TPU重构算力版图
半导体行业观察· 2026-02-09 01:18
当谷歌的大模型 Gemini 3 在2025年末以惊人的多模态处理速度和极低的延迟震撼业界 时,外界往往将目光聚焦于算法的精进。然而,真正的功臣正沉默地跳动在谷歌数据中心 的机架上——那就是他们潜研10年的 TPU (Tensor Processing Unit)。 长期以来,英伟达凭借其"通用而强大"的 GPU 统治了模型训练的黄金时代。但随着大模 型 走 进 规 模 化 应 用 爆 发 期 , 算 力 逻 辑 正 发 生 本 质 改 变 : " 训 练 为 王 " 的 旧 秩 序 正 在 瓦 解,"推理为王"的新时代已经降临。 当专用架构的极致效率突破了通用架构的冗余局限,以 TPU 为代表的 ASIC 芯片正以不 可阻挡之势,从英伟达手中接过主角的剧本,重塑全球AI算力的权力版图。 成本为王,芯片变了 这些年,在海内外厂商的共同推动下,大模型和人工智能成为了几乎人尽皆知的热词。所谓大模 型,其诞生有点像一个人的成长:先通过预训练"博览群书",在海量文本中学习语言结构和世界知 识;再通过指令微调,学会如何按人类要求组织和表达回答;接着借助基于人类反馈的强化学习, 对齐输出风格与边界,使回答更符合人类偏好; ...
东兴证券:全球超节点竞争格局尚未确立 建议关注发布国产超节点云厂商等
智通财经网· 2026-02-05 06:20
Core Viewpoint - Starting from 2025, supernodes will become a significant technological innovation direction in the AI computing network, with increasing competition among AI chip manufacturers in both chip performance and Scale up network [1][5]. Group 1: Supernode Development - Nvidia has launched mature supernode solutions, with plans to release GH200 NVL72, GB200/GB300 NVL72, and VR200 NVL72 from 2024 to 2026 [1][3]. - The Blackwell architecture standardizes Scale up with GB200 NVL72 stabilizing the scale at 72 GPUs per cabinet, consisting of 18 Compute Trays and 9 Switch Trays [2]. - The Rubin architecture will enhance bandwidth, with the NVLink 6 Switch increasing single GPU interconnect bandwidth to 3.6 TB/s, up from 1.8 TB/s [2]. Group 2: Nvidia's Competitive Advantage - Nvidia maintains a leading position in the supernode market, with a projected shipment of approximately 2,800 units of GB200/300 NVL72 by 2025 [3]. - Future plans include the introduction of Vera Rubin NVL144 and Rubin Ultra NVL576, expanding interconnected GPUs from 72 to 576 [3]. - Innovations such as NVLink and NVLink Switch are crucial for achieving high bandwidth and low latency in AI training clusters, with NVLink 5 Switch supporting a total bandwidth of 130 TB/s for 72 GPUs [4]. Group 3: Industry Landscape and Investment Strategy - The global supernode competition landscape is still being established, with Nvidia currently in a leading position [6]. - The report suggests monitoring Nvidia's supernode supply chain, including components like PCB backplanes, high-speed copper cables, optical modules, and cooling systems [6]. - Chinese manufacturers are actively participating in the supernode and Scale up network sectors, with potential for domestic firms to gain a competitive edge [6].
超节点与Scaleup网络专题之英伟达:行业标杆,领先优势建立在NVLink和NVLink3
Dongxing Securities· 2026-02-05 02:28
超节点与 Scale up 网络专题之英伟达: 行业标杆,领先优势建立在 NVLink 和 NVLink Switch 2026 年 2 月 5 日 看好/维持 通信 行业报告 | | | 投资摘要: 大语言模型(LLM)参数规模从千亿级向万亿级乃至十万亿级演进,跨服务器张量并行(TP)成为必然选 择;此外混合专家(MoE)模型在 Transformer 架构 LLM 中的规模化应用,更使跨服务器专家并行(EP) 成为分布式训练和推理的关键技术需求。为应对 TP 和 EP 对网络带宽与延迟的极为严苛的要求,构建超高 带宽、超低延迟的 Scale up 网络(纵向扩张网络)成为业界主流技术路径。 目前英伟达超节点已经推出成熟方案。2024-2026 年,英伟达陆续推出 GH200 NVL72、GB200/ GB300 NVL72、VR200 NVL72 三代超节点。 在超节点方案上,英伟达处于领先优势。2024-2025 年,英伟达陆续推出 GH200 NVL72、GB200/ GB300 NVL72 等成熟超节点解决方案。根据大摩预测,2025 年英伟达 GB200/300 NVL72 出货量约 2800 台 ...
开盘8分钟,20%涨停!重磅利好,持续发酵!
券商中国· 2026-02-03 02:49
据讯石光通讯网1月30日报道,Light Counting 发布最新报告指出,AI发展正推动光收发器和共封装光学 (CPO)市场高速增长。预计2025年市场规模达165亿美元,2026年将激增至260亿美元,年增长率高达60%。 尽管供应链短缺正在缓解,但顶级云公司的资本开支狂热为市场提供了支撑。Meta和Oracle计划在2026年将其 资本开支翻倍,其他公司尚未更新其2026年的支出计划。 有券商研究机构表示,根据当前的假设,2026年面向前五大云公司的光学器件销售额将占其资本开支的3.1% (高于2025 年的2.7%),并将在2031 年增至4.1%。光学连接支出增加可以归因于新的应用,例如Scale-up网 络,以及用于Scale-out 和Scale-up连接的GPU带宽的快速增长。CPO在Scale-up连接中的采纳可能会超出预测, 并在2028 年至2031年间引领市场实现更强劲的增长。 另外,英伟达2月3日举办共封装硅光子交换机相关研讨会NVIDIA将于2026年2月3日(新加坡时间14:00-15:00/ 澳大利亚东部时间17:00-18:00)举办网络研讨会,主题为"面向十亿瓦级AI工厂 ...
As Nvidia Eyes an OpenAI Investment, Should You Buy, Sell, or Hold NVDA Stock?
Yahoo Finance· 2026-01-29 18:27
Core Insights - Nvidia has transformed from a gaming graphics company to a key player in modern computing, with a market capitalization of nearly $4.7 trillion, becoming essential to the AI economy [1]. Company Overview - Nvidia's GPUs are now integral to data centers, AI, robotics, and immersive digital environments, supported by the CUDA software platform that has established it as an industry standard [1]. - The company has a long-standing relationship with OpenAI, participating in a $6.6 billion funding round and committing up to $100 billion for data center expansion, with OpenAI leasing millions of Nvidia chips in a deal valued at hundreds of billions [2]. Financial Performance - Nvidia's revenue for fiscal Q3 reached $57.1 billion, a 62% year-over-year increase, with adjusted EPS climbing 60% to $1.30 per share [11]. - Data center revenue grew 66% year-over-year to $51.2 billion, while networking revenue surged 162% to $8.2 billion, and gaming revenue increased by 30% [12]. - Operating cash flow rose to $23.8 billion, and free cash flow increased by 65% to $22.1 billion, with $37 billion returned to shareholders in the first nine months of fiscal 2026 [13]. Market Position and Valuation - Nvidia's stock is trading at approximately 42.56 times forward adjusted earnings, which is above most peers but below its long-term average, indicating that the premium may be justified given strong earnings growth [9]. - Analysts maintain a consensus rating of "Strong Buy" for Nvidia, with an average price target of $254.81, suggesting a potential upside of 34% [16]. Future Outlook - Nvidia is expected to report revenue of around $65 billion for Q4, with analysts projecting a 70.6% year-over-year EPS growth to $1.45 [14]. - For the full fiscal 2026, EPS is projected to increase by 51.2% to $4.43, followed by a further rise of 58.9% to $7.04 in fiscal 2027 [15].
越来越重要的SerDes
半导体芯闻· 2026-01-26 08:44
如果您希望可以时常见面,欢迎标星收藏哦~ 通信技术的发展始终朝着更高速度的方向迈进——从电话线到光纤,从3G到5G。然而,一项名为 SerDes (串行器/解串器)的、已有数十年历史的技术,如今却在半导体行业引起了特别的关注。 这项成熟的技术为何突然成为热门话题? 答案很简单:人工智能。 训练像 ChatGPT 这样的大型 AI 模型需要数千个 GPU 协同工作。挑战在于这些 GPU 必须交换的 海量数据。无论单个 GPU 的性能多么强大,如果数据在它们之间传输的速度不够快,整个系统就 会遇到瓶颈。 SerDes 是 这 条 " 数 据 高 速 公 路 " 背 后 的 技 术 。 随 着 人 工 智 能 对 带 宽 的 需 求 不 断 突 破 现 有 限 制 , SerDes 已迅速从"锦上添花"的组件跃升为行业不可或缺的"关键技术" 。 SerDes 是Serializer和Deserializer的合成词。它的功能出奇地简单。 在计算机内部,数据沿着多条并行线路传输——就像一条八车道高速公路。然而,当在芯片或设备 之间传输数据时,维持这种并行结构就变得非常棘手。"八车道"需要大量的物理线路,而且要同步 所 ...
SerDes,愈发重要
半导体行业观察· 2026-01-26 01:42
公众号记得加星标⭐️,第一时间看推送不会错过。 通信技术的发展始终朝着更高速度的方向迈进——从电话线到光纤,从3G到5G。然而,一项名为 SerDes (串行器/解串器)的、已有数十年历史的技术,如今却在半导体行业引起了特别的关注。这 项成熟的技术为何突然成为热门话题? 答案很简单:人工智能。 训练像 ChatGPT 这样的大型 AI 模型需要数千个 GPU 协同工作。挑战在于这些 GPU 必须交换的海 量数据。无论单个 GPU 的性能多么强大,如果数据在它们之间传输的速度不够快,整个系统就会遇 到瓶颈。 SerDes 是这条"数据高速公路"背后的技术。随着人工智能对带宽的需求不断突破现有限制,SerDes 已迅速从"锦上添花"的组件跃升为行业不可或缺的"关键技术" 。 SerDes 是Serializer和Deserializer的合成词。它的功能出奇地简单。 在计算机内部,数据沿着多条并行线路传输——就像一条八车道高速公路。然而,当在芯片或设备之 间传输数据时,维持这种并行结构就变得非常棘手。"八车道"需要大量的物理线路,而且要同步所有 八条线路的传输时间也极其困难。 SerDes方案非常巧妙:在出发点将 ...
芯片初创公司,单挑英伟达和博通
半导体行业观察· 2026-01-22 04:05
Core Insights - Upscale AI, a chip startup, has raised $200 million in Series A funding to challenge Nvidia's dominance in rack-level AI systems and compete with companies like Cisco, Broadcom, and AMD [1][3] - The rapid influx of investors reflects a growing consensus that traditional network architectures are inadequate for the demands of AI, which require high scalability and synchronization [1][2] Funding and Market Position - The funding round was led by Tiger Global, Premji Invest, and Xora Innovation, with participation from several notable investors, bringing Upscale AI's total funding to over $300 million [1] - The AI interconnect market is projected to reach $100 billion by the end of the decade, prompting Upscale AI to focus on this growing sector [6] Technology and Product Development - Upscale AI is developing a chip named SkyHammer, optimized for vertical scaling networks, which aims to provide deterministic latency for data transmission within rack components [9][10] - The company emphasizes the importance of heterogeneous computing and networks, believing that no single company can provide all the necessary technologies for AI [10][12] Competitive Landscape - Nvidia's networking revenue has seen a significant increase, with a 162% year-over-year growth, highlighting the competitive pressure in the AI networking space [3] - Upscale AI aims to create a high radix switch and a dedicated ASIC to compete with Nvidia's NVSwitch and other existing solutions [14][16] Strategic Partnerships and Standards - Upscale AI is building its platform on open standards and actively participating in various alliances, including the Ultra Accelerator Link and SONiC Foundation [7][17] - The company plans to expand its product line to include more traditional horizontal scaling switches while maintaining partnerships with major data center operators and GPU suppliers [18]