Workflow
理想TOP2
icon
Search documents
理想是如何理解纯电补能的?
理想TOP2· 2025-05-24 13:41
Core Viewpoint - The essential elements for electric vehicle charging are fast charging, extensive charging network coverage, and a good overall charging experience [1][2][5] Charging Experience - 90% of users take a break after driving over 240 kilometers on highways, with most resting for 10 to 20 minutes [1][2] - The speed of charging from a user perspective is calculated as the range added divided by the charging time, with an average of 37 kilometers added per minute during the charging process [2][5] Charging Infrastructure - The company plans to establish over 4,000 charging stations this year, with a focus on both highways and urban areas to ensure users can charge conveniently [3][5] - As of now, there are over 2,280 charging stations in operation, with a goal to reach 4,000 by the end of the year [3] User Experience Enhancements - The company provides detailed navigation for charging stations, including information on availability, distance, and estimated charge upon arrival, which helps alleviate user anxiety regarding charging [5] - The challenge of ultra-fast charging is highlighted, with a focus on improving the efficiency of power supply and capacity utilization to meet the growing demand for electric vehicles [5]
理想超充站2313座|截至25年5月21日
理想TOP2· 2025-05-21 16:00
来源: 北北自律机 25年05月21日星期三 理想超充 2 新增。 超充建成数:2311→2313座 云南省 昆明市 昆明滇池海埂大坝亚朵酒店 为城市4C站,规格:4C × 6 【附】2 座新增建成 基于i8发布日期 2500+座目标 新增数进度值:75.55%→75.81% i8发布剩余71天(按7月31假设) i8发布剩余时间进度值:66.35% 需每日 2.63 座,达到 i8发布 目标值 加微信,进群深度交流理想长期基本面。不是车友群。 ———————————————————— 基于2025年底4000+座目标 今年新增数进度值:25.69%→25.78% 今年剩余224天 今年时间进度值:38.63% 需每日 7.53 座,达到年底目标值 浙江省 台州 台州皇冠假日酒店 为城市4C站,规格:4C × 6 ...
理想25年销量目标降为64万, 符合我此前判断
理想TOP2· 2025-05-21 16:00
可以看到,一见Auto 5月21日报的数字,与TOP2 3月31日推测的数字吻合度挺高。 当时TOP2判断理想增程有50万的基本面,但55万挺困难, MEGA真的在逐渐破圈,6-9月绝对是 有机会单月交付上2000的,即使上不了2000,单月超1500也是希望颇高的。 2025年5月21日,一见Auto说理想将25年目标调整为64万,其中L系列52万,纯电(包含MEGA)12万。 详见《 21独家 |理想汽车今年销量目标调整为64万辆 》。 2025年3月31日,一见Auto说理想25年目标为70万,纯电i系列5万。详见《 21独家|理想汽车今年内 部销量目标:全年70万辆,纯电i系列5万辆 》 在2025年3月31日TOP2就判断全年70万目标是在拔高预期,i系列5万在降低预期,推测理想增程全年 50-55万左右,包含MEGA的纯电8-13万左右,实际交付大概率58-65万左右,小概率68万。详见:《 21 说理想目标全年70万纯电5万|推测全年在拔高预期, 纯电在降预期 》 目前来看,这些判断是经得起验证的。 加微信,进群深度交流理想长期基本面。不是车友群。 ...
25款MEGA可能有8000左右大定, 如果为真, 则基本保底月销2000+
理想TOP2· 2025-05-21 06:57
Group 1 - The core assumption is that MEGA currently has around 8000 pre-orders, based on two pieces of information: community feedback and a circulated image showing 7800 pre-orders as of May 18 [1][2] - If MEGA delivers 1000 units in May, there will be 7000 pre-orders remaining. If the monthly order is 1000 for the next 7 months, it will total 14000 orders, leading to a monthly sales target of 2000 units [1] - If the monthly order increases to 1500, it will result in 17500 orders and a monthly sales target of 2500 units. For a monthly order of 2000, it will lead to 21000 orders and a monthly sales target of 3000 units [1] Group 2 - The expectation is that if MEGA can achieve a monthly sales volume of 3000, some customers from the small market segment may shift to the larger market segment [1] - Common misconceptions about MEGA, such as parking difficulties, the need for a villa, and concerns about charging experience, are seen as misunderstandings that could be addressed [2] - A monthly sales volume of 5000 units could demonstrate that MEGA is indeed a product for the larger market, with potential opportunities for the next generation of MEGA [2]
理想超充站2311座|截至25年5月20日
理想TOP2· 2025-05-20 13:30
基于i8发布日期 2500+座目标 新增数进度值:74.64%→75.55% i8发布剩余72天(按7月31假设) i8发布剩余时间进度值:65.88% 需每日 2.63 座,达到 i8发布 目标值 基于2025年底4000+座目标 今年新增数进度值:25.38%→25.69% 今年剩余225天 今年时间进度值:38.36% 需每日 7.51 座,达到年底目标值 【附】7 座新增建成 福建省 厦门市 厦门宏益华府西南停车场 为城市4C站,规格:4C × 6 江苏省 苏州 苏州常熟凤凰城 为城市5C站,规格:2C × 3 5C × 1 内蒙古自治区 呼和浩特市 呼和浩特御花园玺宴 为城市4C站,规格:4C × 8 来源: 北北自律机 25年05月20日星期二 理想超充 7 新增。 超充建成数:2304→2311座 上海市 嘉定区 上海嘉定金园五路 为城市4C站,规格:4C × 6 天津市 静海区 天津新世纪购物中心 为城市4C站,规格:4C × 8 浙江省 杭州 杭州往来数聚产业园 为城市4C站,规格:4C × 6 浙江省 绍兴市 绍兴迅腾大厦 为城市4C站,规格:4C × 6 福建省 厦门市 ———————— ...
一些人认为问界自动泊车好于理想原因分析
理想TOP2· 2025-05-20 13:30
在TOP2信息茧房内,理想自动泊车口碑总体处于一个不错的水平,不过问界的口碑要更好一些,这 个更好主要体现在两个方面。 1.停的速度明显更快。(一方面是倒车的绝对速度,另一方面是一些车位,理想要调整更多次方向。) 2.一部分理想自动泊车停不进去的地方,问界可以停。 造成这个现象的直接原因是问界的自动泊车华为花了很多精力基于规则优化,理想目前的版本没有为 泊车专门做基于规则的优化,模型能力在哪里,泊车能力就在哪里。 在这个局部此时此刻的用户价 值的确问界比理想更强,且有可能还会持续不算很短的时间。 理想为什么自动泊车不深入做基于规则的优化,而对ETC出入口做了基于规则的优化,背后可能有主 要两方面考虑: 1. ROI考虑,做的话要投入资源精力,理想认为随着能力更强,自动泊车能力本身就会更强,且基于 规则投的资源,对基于能力的自动泊车体验没啥帮助。 2.李想个人可能不爱用自动泊车或对泊车方便度耐受度比较高,他这块的痛点低,ETC痛点更高。 李想个人可能不爱用自动泊车或对泊车方便度耐受度比较高的推测依据主要基于4点: 1.曾经很长一段时间理想自动泊车处于很差的水平。 2.李想在AI Talk 第一季时表示,他用理想 ...
理想超充站2304座|截至25年5月19日
理想TOP2· 2025-05-19 13:18
Core Insights - The article discusses the progress of the company's supercharging station construction, highlighting the current and future targets for the number of stations to be built [1] Group 1: Supercharging Station Progress - The total number of supercharging stations has increased from 2302 to 2304, achieving a progress rate of 74.64% towards the goal of over 2500 stations by the i8 release date [1] - There are 73 days remaining until the i8 release, with a progress value of 65.40% for the time left [1] - To meet the i8 release target, the company needs to build an average of 2.68 stations per day [1] Group 2: Yearly Construction Goals - The progress for the current year's new station construction has increased from 25.30% to 25.38%, with 226 days remaining in the year [1] - The time progress for this year stands at 38.08%, indicating the need to construct an average of 7.50 stations per day to meet the year-end target of over 4000 stations [1] Group 3: New Stations Built - Two new supercharging stations have been completed: one in Quanzhou, Fujian, and another in Guangzhou, Guangdong, both classified as urban 4C stations with specifications of 4C × 6 [1]
2019年李想对理想汽车企业文化与经营战略的理解
理想TOP2· 2025-05-19 13:18
Core Viewpoint - The article emphasizes the importance of cultivating a workforce of "adults" who can take responsibility, make choices, and continuously ask themselves what is most important, drawing comparisons between the educational systems in the U.S. and China [1][2]. Group 1: Organizational Development - The company aims to develop "adult" talents who possess strong judgment, decision-making, leadership, and collaboration skills, fostering a growth-oriented organization [2][3]. - A well-structured management system should be as effective for employees as it is for customers, promoting a unified language and approach within the team [1]. Group 2: Personal Development Habits - The article introduces "The 7 Habits of Highly Effective People" as a crucial framework for personal and organizational growth, which has been beneficial in developing effective leaders [3][4]. - The first habit, "Be Proactive," emphasizes the importance of making active choices and focusing on positive outcomes rather than negative circumstances [6][7]. - The second habit, "Begin with the End in Mind," encourages individuals to define their ultimate mission and vision in life, which serves as a guiding principle for decision-making [10][11]. - The third habit, "Put First Things First," highlights the significance of prioritizing the most important tasks that yield the greatest results, adhering to the 80/20 principle [14][15]. Group 3: Leadership and Collaboration - The fourth habit, "Think Win-Win," stresses the importance of mutual respect and seeking mutually beneficial outcomes in all relationships [27]. - The fifth habit, "Seek First to Understand, Then to Be Understood," focuses on the importance of listening and understanding others to build trust and effective collaboration [29]. - The sixth habit, "Synergize," advocates for finding better solutions through collaboration, emphasizing that collective efforts can yield greater results than individual contributions [30][31]. Group 4: Continuous Improvement - The seventh habit, "Sharpen the Saw," encourages ongoing investment in personal development across various dimensions, ensuring continuous growth and improvement [31].
TransDiffuser: 理想VLA diffusion出轨迹的架构
理想TOP2· 2025-05-18 13:08
Core Viewpoint - The article discusses the advancements in the field of autonomous driving, particularly focusing on the Diffusion model and its application in generating driving trajectories, highlighting the differences between VLM and VLA systems [1][4]. Group 1: Diffusion Model Explanation - Diffusion is a generative model that learns data distribution through a process of adding noise (Forward Process) and removing noise (Reverse Process), akin to a reverse puzzle [4]. - The model's denoising process involves training a neural network to predict and remove noise, ultimately generating target data [4]. - Diffusion not only generates the vehicle's trajectory but also predicts the trajectories of other vehicles and pedestrians, enhancing decision-making in complex traffic environments [5]. Group 2: VLM and VLA Systems - VLM consists of two systems: System 1 mimics learning to output trajectories without semantic understanding, while System 2 has semantic understanding but only provides suggestions [2]. - VLA is a single system with both fast and slow thinking capabilities, inherently possessing semantic reasoning [2]. - The output of VLA is action tokens that encode the vehicle's driving behavior and surrounding environment, which are then decoded into driving trajectories using the Diffusion model [4][5]. Group 3: TransDiffuser Architecture - TransDiffuser is an end-to-end trajectory generation model that integrates multi-modal perception information to produce high-quality, diverse trajectories [6][7]. - The architecture includes a Scene Encoder for processing multi-modal data and a Denoising Decoder that utilizes the DDPM framework for trajectory generation [7][9]. - The model employs a multi-head cross-attention mechanism to fuse scene and motion features during the denoising process [9]. Group 4: Performance and Innovations - The model achieves a Predictive Driver Model Score (PDMS) of 94.85, outperforming existing methods [11]. - Key innovations include anchor-free trajectory generation and a multi-modal representation decorrelation optimization mechanism to enhance trajectory diversity and reduce redundancy [11][12]. Group 5: Limitations and Future Directions - The authors note challenges in fine-tuning the model, particularly the perception encoder [13]. - Future directions involve integrating reinforcement learning and referencing models like OpenVLA for further advancements [13].
理想超充站2302座|截至25年5月17日
理想TOP2· 2025-05-17 15:41
江西省 赣州 赣州钱权三和停车场 为城市4C站,规格:4C × 6 山东省 泰安市 京台高速 泰安悦蓝山小区 为高速出入口4C站,规格:4C × 6 来源: 北北自律机 25年05月17日星期六 理想超充 7 新增。 超充建成数:2295→2302座 基于i8发布日期 2500+座目标 新增数进度值:73.48%→74.39% i8发布剩余75天(按7月31假设) i8发布剩余时间进度值:64.45% 需每日 2.64 座,达到 i8发布 目标值 基于2025年底4000+座目标 今年新增数进度值:24.99%→25.30% 今年剩余228天 今年时间进度值:37.53% 需每日 7.45 座,达到年底目标值 【附】7 座新增建成 北京市 朝阳区 北京富力双子座 为城市5C站,规格:4C × 6 5C × 2 甘肃省 兰州 接驾嘴服务区(青兰高速青岛方向) 为高速服务区5C站,规格:2C × 3 5C × 1 ———————————————————— 山东省 烟台市 烟台威斯汀酒店 为城市4C站,规格:4C × 6 天津市 宝坻区 天津安成街 为城市4C站,规格:4C × 6 天津市 河北区 天津诺德中心 为 ...