Workflow
GLP1减重宝典
icon
Search documents
权威期刊Science披露:一类常见膳食纤维或成全新“减脂神器”,大幅改善代谢健康!
GLP1减重宝典· 2026-01-06 15:01
以下文章来源于肥胖世界ObesityWorld ,作者欢迎订阅 肥胖世界ObesityWorld . 《肥胖世界》Obesity World - 同步传真肥胖及代谢国际新学术进展,为医学减重临床、教研人员搭建一座与国际接轨的桥梁,「每医健」旗下内容平台。 众所周知,膳食纤维的摄入有助于提升代谢水平,降低代谢性疾病的发生率。几丁质作为地球上分布最广的天然多糖之一,主要存在于昆虫外 骨骼、甲壳类动物壳及蘑菇等食物中,是2型免疫反应的典型启动因子。 那么,几丁质究竟是如何引发2型免疫反应的?它在消化道里扮演着怎样的角色?又会对人体代谢带来哪些积极影响? 近日,美国布法罗大学等机构的科学家在国际顶尖期刊Science发表了题为《A type 2 immune circuit in the stomach controls mammalian adaptation to dietary chitin》的最新成果。研究显示,摄入膳食几丁质会影响免疫系统的活性,而这种积极的免疫反应能够有效减少体重增 加、降低体脂,增强抗肥胖能力。 一、研究内容与思路 1、膳食几丁质诱导胃部膨胀及2型免疫激活 几丁质可通过IL-25、IL- ...
速递|Nimbus 携手礼来押注口服减肥药!AI小分子成下一代竞争焦点
GLP1减重宝典· 2026-01-06 15:01
整理 | GLP1减重宝典内容团队 Nimbus Therapeutics 宣布与礼来达成一项多年期研究合作及全球独家授权协议,双方将联合开发一种用于肥胖及其他代谢性疾病的全 新口服疗法。这一合作是在双方此前围绕 AMPK 靶点、面向心代谢疾病开展研究合作的基础上进一步深化,显示出礼来在代谢领域持 续加码、并积极拓展下一代技术路线的明确战略。 根据协议内容,Nimbus 将利用其以 AI 增强的计算化学和结构基础药物设计平台,推进一项处于早期阶段的小分子发现项目,直指肥 胖治疗领域长期存在的未满足需求。与当前以注射型多肽药物为主的减重方案不同,该项目聚焦口服小分子路径,被视为未来提升依从 性、扩大适用人群的重要方向。 礼来糖尿病与代谢研发负责人表示,Nimbus 在复杂靶点药物发现方面展现了卓越能力,此次合作将为礼来代谢疾病管线补充全新的创 新机制,进一步丰富其在肥胖治疗领域的技术储备。Nimbus 方面则指出,公司将 AI 驱动的预测模型与结构导向设计深度融合,已多 次在"难成药"靶点上成功交付高质量候选分子,此次与礼来的再次合作,有望加速将突破性口服疗法带给肥胖患者。 在商业条款方面,Nimbus 有资格 ...
开展在即!请收下这份CES Digital Health参会指南
GLP1减重宝典· 2026-01-06 15:01
Group 1 - The core viewpoint of the article emphasizes the integration of AI in the healthcare sector, driven by the government's initiative to implement "Artificial Intelligence+" in key areas such as healthcare [32] - CES Digital Health is not a single exhibition area but a thematic thread that runs throughout the CES event, aiming to embed health topics naturally into consumer technology and personal behavior [6][8] - Attendees are encouraged to view Digital Health as a visiting route rather than a destination, with a recommended daily schedule that includes health-related meetings, selective exhibitor interactions, and health-themed social events [8][12] Group 2 - The Digital Health Summit consists of a series of health-related sessions that are highly interconnected, covering topics like AI, wearables, and health data, making it essential for investors and entrepreneurs to choose wisely which sessions to attend [9][11] - A practical screening criterion for sessions is to prioritize panels or fireside chats over keynote speeches, as panels often reveal real-world constraints and regulatory considerations that are crucial for assessing the viability of health tech solutions [11] - High-quality health discussions may not always be labeled under Digital Health but can be found in agendas related to AI, policy, and security, particularly those addressing privacy and data usage [12] Group 3 - The Digital Health Lounge and Mixer are valuable networking opportunities that are often underestimated, providing high-density information exchange among health professionals [15][19] - The Digital Health Lounge serves as a themed gathering space for health-related professionals, enhancing the likelihood of meaningful interactions [15] - The Digital Health Mixer is a social event organized by official partners, where significant investment and collaboration discussions often take place [15][19] Group 4 - When engaging with health-related exhibitors, four key questions should be prioritized to differentiate between concept products and those ready for market implementation [18] - These questions focus on product usage frequency, data continuity, system responsibilities, and clarity on regulatory boundaries, which can be assessed within a short interaction [18] - Before leaving CES, it is recommended to reflect on recurring product types, companies transitioning to long-term relationship designs, and unanswered questions from discussions, as these insights can hold greater investment value than individual products [21]
超越减肥,替尔泊肽等GLP-1正帮助人们改善睡眠质量
GLP1减重宝典· 2026-01-05 15:57
整理 | GLP1减重宝典内容团队 近年,GLP-1受体激动剂如司美格鲁肽和替尔泊肽因显著的减重与控糖效果受到关注。随着替尔泊肽获批用于治疗阻塞性睡眠呼吸暂停 (OSA),其应用范围已延伸到代谢疾病之外。专家认为,这一进展正推动睡眠医学进入新阶段。"睡眠呼吸暂停正进入一个药物也能 介入的时代,而不仅是依赖CPAP等设备," 研究者认为替尔泊肽在OSA上的应用只是开端。"这类药物可能重新定义睡眠呼吸暂停及相关疾病的治疗方式。"然而目前仍需合理管理 患者预期,并推动其纳入综合治疗框架。"肥胖是一种慢性疾病,需要长期管理。GLP-1类药物具有变革性,但最好与营养、运动和行 为干预配合使用。关键在于改善长期健康,而不是只追求快速减重。" 加州大学圣迭戈分校的睡眠研究者Atul Malhotra表示,GLP-1类药物的作用不仅限于减重,可能还涉及代谢、炎症甚至神经调节机制。 肥胖是OSA最重要的可控风险因素之一,减重常带来明显改善。NYU Langone睡眠中心的Alcibiades Rodriguez表示:"我们经常看到患 者通过传统方式、代谢手术或GLP-1类药物减重后,睡眠呼吸暂停得到改善,甚至完全缓解。"早期, ...
顶级学刊《Cell Metabolism》物热点:发现既冻龄也减脂的脑细胞!专家确认中枢能遥控热量代谢,赋能延寿及机体活力
GLP1减重宝典· 2026-01-05 15:57
以下文章来源于肥胖世界ObesityWorld ,作者欢迎订阅 肥胖世界ObesityWorld . 《肥胖世界》Obesity World - 同步传真肥胖及代谢国际新学术进展,为医学减重临床、教研人员搭建一座与国际接轨的桥梁,「每医健」旗下内容平台。 下丘脑是哺乳动物体内的"总指挥",通过激素调控肝脏、脂肪、肌肉、肠道等外周器官的功能,同时这些外周器官分泌的因子也能反过来影响 下丘脑。在本项研究中,团队发现小鼠下丘脑背内侧核(DMH)中,富集着表达Ppp1r17蛋白的神经元(简称DMHPpp1r17神经元)。这些神 经元主要是谷氨酸能神经元,能将信号投射到与能量代谢密切相关的多个脑区。 研究人员通过特异性敲除DMH神经元中的Ppp1r17,发现这些神经元与白色脂肪组织之间存在直接"通信"。白色脂肪是我们熟悉的储能脂肪, 也是减肥人士的"头号公敌"。实验显示,这种神经—脂肪互动不仅调控小鼠的衰老进程,还能帮助减少脂肪储备,起到瘦身效果。 说到抗衰老,有人选择在脸上涂抹各种护肤品,有人精打细算地控制热量摄入,还有人尝试更极端的方法,比如输别人的血液或进行粪菌移 植。虽然市面上的抗衰方式五花八门,但科学家们认为 ...
速递|36周减重23.6%,恒瑞原研减重药HRS9531,定名瑞普泊肽!
GLP1减重宝典· 2026-01-05 15:57
整理 | GLP1减重宝典内容团队 新年伊始,国产减重新药迎来重要进展。恒瑞医药自主研发的 HRS9531 注射液,其通用名正式获批为瑞普泊肽(Ribupatide),标志 着这一重磅分子正式"有名有姓"进入公众视野。瑞普泊肽是一款同时作用于胰高血糖素样肽1和葡萄糖依赖性促胰岛素肽的双受体激动 剂,主要面向超重与肥胖人群及相关合并症,同时覆盖2型糖尿病等适应症。目前,瑞普泊肽已在中国开展多项临床研究,累计入组受 试者超过2000人,是国内GLP-1/GIP双靶点药物中推进速度最快、数据最为完整的候选之一。 为什么选择GLP-1与GIP双靶点 在代谢类疾病治疗领域,GLP-1已被反复验证具有抑制食欲、延缓胃排空、增强饱腹感的作用,同时还能促进胰岛素分泌、降低胰高血 糖素水平,从而实现稳定降糖与体重管理。但单纯依赖GLP-1,往往伴随一定比例的胃肠道不适,影响部分患者的耐受性。 GIP的引入,正是为了解决这一痛点。GIP不仅参与胰岛素分泌调节,还可通过中枢神经系统影响能量平衡,改善代谢效率,并在一定 程度上缓解GLP-1相关的胃肠道副作用,同时促进脂肪分解。瑞普泊肽在保持较高GLP-1活性的基础上,引入GIP这一 ...
权威代谢学刊发声:瘦身产业迎巨变!定制型疗法已掀起新浪潮
GLP1减重宝典· 2026-01-05 15:57
Core Viewpoint - Obesity has become a global health challenge affecting over 650 million adults, and traditional weight loss interventions show significant variability in effectiveness among individuals. A new predictive tool combining genetic information and physiological parameters has been developed to enhance personalized obesity treatment [6][9]. Research Background - Traditional BMI-based obesity classification fails to reveal individual differences in appetite regulation and energy metabolism, leading to inconsistent drug treatment outcomes. Current FDA-approved weight loss medications show up to threefold differences in effectiveness among individuals, highlighting the need for more precise efficacy prediction methods [9]. - The study focuses on the quantifiable physiological indicator of "satiety" through deep phenotyping and polygenic risk scoring, aiming to establish a personalized treatment prediction model [9]. Research Methodology - The study included 717 obese patients (BMI ≥ 30 kg/m²), with an average age of 41.1 years and average BMI of 37.0 kg/m². A standardized breakfast was consumed after an overnight fast, followed by a test to measure total caloric intake at maximum satiety [10]. - Genetic analysis involved extracting DNA from leukocytes and using the OmniExome v2.5 chip to detect 2637 loci, focusing on 41 obesity-related genes. Machine learning methods were employed to construct a satiety prediction model [11]. - Two randomized controlled trials were designed to validate the model, assessing weight changes in response to medications over specified periods [11]. Research Results 1. **Drivers of Satiety Variability**: Significant differences in caloric intake for satiety were observed, with males requiring more calories than females. Traditional body composition and metabolic rate indicators had limited explanatory power [12]. 2. **Establishment and Validation of Genetic Risk Score**: The genetic risk score (CTSGRS) showed a strong correlation with average satiety levels in training and validation cohorts, with specific gene variants contributing significantly to predictions [13]. 3. **Predictive Ability of Genetic Risk Score**: The machine learning-derived CTSGRS demonstrated excellent predictive performance, with AUC values indicating strong reliability in both training and validation phases [14]. 4. **Individualized Drug Response Prediction**: The study revealed significant individual differences in drug response, with specific patient profiles responding better to certain medications based on their CTS and CTSGRS levels [15]. Research Conclusion - The study successfully integrated genetic and physiological data to create a predictive model for obesity treatment. Key findings include the genetic basis of satiety differences, the strong predictive capability of the CTSGRS, and the variability in drug response among individuals [16]. Clinical Significance - This research marks a significant advancement in obesity precision classification, with the CTSGRS aiding clinical decision-making and potentially improving the efficacy of personalized medication strategies. Future work may optimize the model for broader weight loss interventions and explore gene-drug interactions for comprehensive obesity management [18].
“管住嘴”不仅靠忍!顶级期刊《细胞》发现中枢“止饿开关”,加速减重药物迭代
GLP1减重宝典· 2026-01-04 13:47
Core Viewpoint - Obesity has become a global public health issue, with over 890 million adults classified as obese, accounting for 13% of the total population. The rise in obesity is linked to lifestyle changes and has increased the risk of chronic diseases such as cardiovascular issues. Traditional weight loss strategies of "eat less, move more" are often insufficient, leading to a growing interest in pharmacological interventions like the popular weight loss drug semaglutide, which suppresses appetite [7][12]. Group 1: Obesity Statistics and Trends - The World Health Organization reports that the number of obese adults worldwide has surpassed 890 million, representing 13% of the global population. This trend has been particularly pronounced over the past 40 years, with significant increases in obesity rates in many countries, including China [7]. - The rise in obesity is associated with a higher risk of chronic diseases, particularly cardiovascular diseases, highlighting the urgent need for effective weight management strategies [7]. Group 2: Mechanisms of Appetite Regulation - Recent research from Columbia University has identified a new group of neurons in the brainstem that play a crucial role in regulating appetite by integrating signals related to food intake and satiety. These neurons secrete cholecystokinin (CCK) to signal the body to stop eating [8][10]. - Unlike traditional satiety neurons that only respond to stomach fullness, these newly discovered neurons can continuously track food information during digestion and integrate various hormonal signals to determine when to cease eating [8][10]. Group 3: Implications for Weight Loss Therapies - The study demonstrated that activating these neurons in mice led to a significant reduction in food intake, suggesting potential pathways for developing new appetite control therapies. The activation of these neurons resulted in slower eating and reduced food consumption [10][12]. - Additionally, GLP-1 receptor agonists, the active component in popular weight loss medications, were found to activate these neurons, indicating their role in appetite regulation. Conversely, appetite-stimulating hormones decreased their activity, further supporting their function in managing food intake [12].
速递|布局减肥吸入创新药,易合医药完成近亿元B轮融资!
GLP1减重宝典· 2026-01-04 13:47
整理 | GLP1减重宝典内容团队 近日,易合医药宣布完成近亿元B轮融资,本轮融资由北京市医药健康产业投资基金领投,三泽创投等机构跟投。资金将重点聚焦三大 方向:推进核心管线临床攻坚、打造全球领先的多肽吸入递送平台、加速创新产品国际化布局,全面夯实公司在干粉吸入药物递送领域 的全链条竞争优势。 易合医药是一家专注于"药械组合干粉吸入药物(DPI)递送创新"的高新技术企业,集研发、生产、销售于一体,主要聚焦于呼吸系统疾 病、心脑血管疾病的干粉吸入制剂开发,实现了从实验室技术到工业化生产以及商业化推广的一体化闭环。此次融资落地,不仅是资本 对其技术实力与战略布局的深度认可,更标志着公司进入"临床提速+平台升级+全球拓展"的三维发展新阶段。 其中旗下管线FD1016聚焦减肥的吸入创新药,通过干粉吸入递送GLP1/GIP/GCG三靶点多肽,经肺入血,实现长效减脂,避免皮下注 射带来的疼痛和创口,较同类口服产品具有数十倍的生物利用度提升,且无需冷藏,稳定性优于传统针剂,属于First in class产品。 加入专家库与我们深度讨论 「GLP-1俱乐部」覆盖数百位专业人士,构建了围绕GLP-1产业链上下游、覆盖多个板块 ...
蚂蚁阿福1500万月活背后,中国AI医疗真正成立的是哪三层结构
GLP1减重宝典· 2026-01-04 13:47
AI医疗观察 . 响应《关于深入实施"人工智能+"行动的意见》,推动AI在医疗领域的应用,本账号发布权威资讯 以下文章来源于AI医疗观察 ,作者关注AI医疗的 蚂蚁阿福月活用户规模已超过 1500 万,成为国内首个月活突破千万的健康管理类 AI 应用,其意义并不仅在规模本身,而在于验证了消费端长 期健康管理的可行性。 而这只是 C 端 AI 医疗商业化的起点。未来真正决定产品能否走向长期增长的,并非单点能力,而是能否把用户的健康行为持续组织起来。基于 大量过往投资案例和长周期验证,我们认为其核心有三层: 高频 刚性 的 场景、大量用户以及用户主动上传的数据 。本文将通过 分析中国 AI 医疗 格局 ,进一步展开这一判断。 为什么是现在:从试点条件走向系统条件 在 通用 AI 2C 产品中,模型足够好,或在某个高频场景中解决了明确痛点,用户规模便可以迅速放大。 但在医疗领域,这一关系长期是倒置 的。医疗模型的有效性高度依赖两类基础条件:一类是来自医疗体系内的历史就诊与检查数据,用以覆盖真实人群与疾病阶段;另一类是来自真 实使用者的长期交互与连续健康记录,用以 解答高度个体化和针对性的健康问题。 所以, AI 医 ...