Workflow
钙钛矿光伏
icon
Search documents
新型半导体光伏研发实现新突破
Jing Ji Guan Cha Wang· 2025-07-11 07:03
长春应化所秦川江和王利祥团队提出了创新的双自由基自组装分子设计策略。这一策略通过构建共平面 给体-受体共轭结构,在自组装小分子中实现了强自由基特性。实验结果表明,该分子在室温下表现出 强烈且稳定的自由基特征,其自旋强度较传统自组装分子高出近三个数量级。这种独特的电子结构显著 增强了载流子传输能力。同时,研究人员通过在分子结构中引入位阻基团,稳定了自由基特性,提高了 分子的二聚能,抑制了分子堆叠现象,使材料在溶液加工过程中更易于形成大面积均匀的自组装薄膜。 因此,双自由基自组装分子在空穴传输性能、化学稳定性及溶液加工性能方面实现了协同优化。 进一步,为精确评估自组装分子的性能,周敏团队采用超分辨电化学测试系统,原位表征并验证了双自 由基自组装分子的性能优势。研究人员利用扫描电化学液池显微镜-薄层伏安技术,实现了对分子在原 位组装态下单分子层载流子传输速率及工作稳定性的量化分析。结果显示,双自由基分子的载流子传输 速率是传统材料的两倍以上,并在模拟工况条件下表现出极高的稳定性,优于传统自组装分子。同时, 该技术实现了对自组装分子组装密度和大面积均匀性的量化与可视化分析。研究表明,新型双自由基分 子可通过共价锚定形 ...
2025年新材料产业未来趋势展望:技术突破重构产业格局(附细分报告)
材料汇· 2025-07-10 15:47
1.1全球政策加速材料迭代 1.2 技术交叉催生颠覆性突破 2. 六大核心赛道深度解析 3. 2025年战略聚焦方向 4. 企业突围路径建议 点击 最 下方 "在看"和" "并分享,"关注"材料汇 添加 小编微信 ,遇见 志同道合 的你 正文 目录 1. 产业变革背景:碳中和与第四次工业革命的双重驱动 5. 结语:材料革命重塑人类文明 2.1 固态电池材料:电动车革命的终极答案 2.2 超导材料:能源网络与量子计算的基石 2.3 生物基可降解材料:万亿级替代市场启动 2.4 宽禁带半导体材料:5G/6G时代的底层支撑 2.5 智能响应材料:人机交互的新界面 2.6 超材料:重新定义物理规律 3.1 商业化临近临界点的材料 (1)固态电解质 (2)钙钛矿光伏材料 3.2 可能引发产业链重构的技术 (1)分子级自组装材料 (2)氢脆抑制合金 3.3 地缘政治敏感领域 (1)极紫外光刻胶 (2)高纯石英砂 4.1 生态构建:宁德时代"材料 - 电芯 - 回收"闭环体系 4.2 敏捷创新:陶氏化学数字孪生材料开发平台 4.3 标准争夺:中国石墨烯联盟主导ISO/IEC国际标准制定 图 新材料产业全景图,来源:新材料在 ...
最新!大尺寸钙钛矿光伏组件可靠性测试失效分析
Sou Hu Cai Jing· 2025-07-10 13:05
由科促会钙钛矿产业分会指导、光伏领跑者创新论坛主办的"将于2025年 8月26-28日在 江苏常州盛大召开,即将为行业带来一场盛宴。超千人会 议规模,超百家参会企业, 欢迎各位钙钛矿行业同仁共商钙钛矿发展大计! 大会特别邀请到TÜV北德集团中国区光伏产品运营总监刘亮先生做演讲报告《大尺寸钙钛矿光伏组件可靠性测试失效分析》: 报告题目 《大尺寸钙钛矿光伏组件可靠性测试失效分析》 光伏产品运营总监 钙钛矿作为一种新兴的太阳电池技术,凭借其高效率、低成本等显著优势,在短短十几年间迅速崛起,备受全球能源领域的关注。自2009年首次 应用以来,钙钛矿电池的光电转换效率实现了从3.8%到逼近晶硅电池效率极限的飞速增长。 然而,在钙钛矿迈向产业化发展的道路上,可靠性问题成为了制约其大规模商业化应用的关键瓶颈。与传统晶硅组件长达30年以上的发电寿命相 比,当前大尺寸钙钛矿组件的稳定性明显不足,这主要是钙钛矿材料自身的特性以及其对环境因素的高度敏感特性导致的。 因此,深入探究钙钛矿光伏组件的可靠性,对于推动其在能源市场的广泛应用具有极为重要的意义。 演讲嘉宾 刘亮 TÜV北德集团中国区 报告摘要 刘亮,现任TÜV北德集团中国区 ...
京东方A(000725):钙钛矿光伏业务顺利布局,强调资本战略向价值转型
GOLDEN SUN SECURITIES· 2025-07-09 09:47
Investment Rating - The report maintains a "Buy" rating for BOE Technology Group Co., Ltd. (京东方 A) [5][7] Core Viewpoints - The company emphasizes that LCD will remain the mainstream display technology in the medium to long term, while the flexible OLED market is rapidly growing. The industry is transitioning from competition based on scale and market share to high-value-driven competition [2] - BOE is advancing its "N Curve" growth strategy, focusing on new business growth areas such as perovskite photovoltaic devices and glass-based packaging, which are expected to support future growth [3] - The company's profitability is expected to improve as it transitions its capital strategy towards value creation, with significant capital expenditures and depreciation peaks anticipated in 2025, leading to a more favorable environment for shareholder returns [4] Financial Projections - Revenue projections for 2025, 2026, and 2027 are estimated at CNY 215.996 billion, CNY 239.566 billion, and CNY 264.058 billion, respectively. Corresponding net profits are projected to be CNY 9.415 billion, CNY 13.410 billion, and CNY 15.513 billion [5][6] - The report indicates a significant recovery in net profit growth rates, with expected year-on-year increases of 76.9% in 2025 and 42.4% in 2026 [6] Financial Metrics - The report provides key financial metrics, including a projected P/E ratio of 15.9 for 2025 and a P/B ratio of 1.0, indicating a favorable valuation relative to earnings and book value [6][7] - The company's return on equity (ROE) is expected to improve from 6.6% in 2025 to 9.6% in 2027, reflecting enhanced profitability [6]
京东方:资本战略重心从规模扩张转向股东价值创造
新华财经上海7月9日电(记者高少华)京东方(A股:000725;B股:200725)8日在上海举行投资者日 大会,向投资者全面介绍了"屏之物联"战略下企业发展亮点,"第N曲线"代表——钙钛矿光伏业务也首 度亮相资本市场。记者从大会获悉,京东方资本战略重心正从规模扩张转向股东价值创造的全新发展阶 段。大规模产线投资已不再是公司发展主旋律,京东方将于2025年迎来资本开支和折旧"双高峰",此后 将有望步入盈利提升通道,盈利的确定性改善为持续回报股东创造了有利条件。 据介绍,当前显示行业供给端正进入存量时代,格局实现重塑,从过去"规模和市场份额"竞争逐渐转向 高价值驱动。液晶显示(LCD)仍将是未来中长期显示行业的主流应用技术,大尺寸化成为趋势,高分 辨率、高刷新率产品的推陈出新带来液晶显示技术旺盛的市场生命力。与此同时,柔性OLED市场规模 快速增长,技术创新加速向IT、车载等中尺寸领域渗透,带动OLED产业蓬勃发展。 转自:新华财经 编辑:林郑宏 京东方今年还推出了历史上首个全面涵盖分红、回购的股东回报规划,承诺未来三年每年现金分红不低 于归母净利润的35%、每年用于回购并注销的资金总额不低于15亿元、有条件的 ...
新材料突围:"十五五"新材料万亿级机遇与十大观点
材料汇· 2025-07-05 15:20
Core Insights - The article highlights differentiated growth in specific segments, with semiconductor materials growing at 50%, new energy materials at 52%, and biomedical materials at 87%, while traditional structural materials maintain a stable growth rate of 8-10% [2][10]. - Emerging fields are rapidly rising, such as AI servers with high-frequency materials growing at 60%, new energy vehicles with MLCC demand increasing by 100%, and hydrogen energy with a 60% localization rate for proton exchange membranes [2][10]. - The industry chain is evolving, with semiconductor materials seeing a "wafer factory + material factory" bundling development model, and new energy materials adopting a three-in-one model involving automakers, battery manufacturers, and material suppliers [2][12]. Market Dynamics - Channel transformation is evident, with traditional distribution dropping to 40%, while customized services account for 35%, technology licensing for 15%, and joint research for 10% [3][13]. - Reverse innovation is on the rise, with downstream applications leading material customization, breaking the traditional linear research-production-sales model, and it is expected that by 2030, 30% of new material innovations will be driven by application scenarios [3][20]. - Companies are making strategic choices, with leading firms focusing on "materials + equipment + algorithms" full-stack capabilities, SMEs concentrating on niche technologies, and startups exploring disruptive innovations [3][23]. Technological Advancements - Material genome engineering is revolutionizing the R&D model, while breakthroughs in production processes are reshaping cost curves [4][16]. - Future technological directions include extreme performance breakthroughs, intelligent upgrades, green manufacturing, and cross-industry integration [4][20]. Market Outlook - The market is projected to reach 1 trillion yuan by 2025 and exceed 3 trillion yuan by 2030, maintaining a CAGR of 18%, driven by domestic substitution, technological iteration dividends, and the expansion of emerging applications [4][19]. - Key materials to watch include high-end photoresists, aerospace engine materials, solid-state batteries, high-temperature superconductors, perovskite photovoltaic materials, high-frequency materials, MLCCs, UTG glass, and biodegradable materials [4][10]. Industry Background - The innovative materials sector is a cornerstone for China's manufacturing transformation, with the industry size surpassing 6 trillion yuan in 2024, maintaining a 20% annual growth rate [7][8]. - The industry is characterized by intensive policy support, accelerated technological breakthroughs, and expanded application scenarios, particularly in fields like solid-state battery materials and high-temperature superconductors [8][10]. Competitive Landscape - The industry is witnessing an increase in concentration, characterized by a dual-track model of "national teams leading + specialized private firms" [12]. - The collaborative model in the supply chain is innovating significantly, with semiconductor materials adopting a bundling development model and new energy materials forming a three-in-one R&D approach [12][13]. Policy and Institutional Innovation - National strategic layouts provide strong support, with the Ministry of Industry and Information Technology outlining key development directions for advanced materials [15]. - The establishment of a standard system that aligns with international standards is accelerating, although challenges remain due to new EU regulations [15][16]. Investment Strategy Recommendations - Focus on three major tracks: high certainty in domestic substitution (semiconductor precursors, medical-grade polylactic acid), beneficiaries of technological iteration (solid-state electrolytes, superconducting materials), and platform technology companies (materials AI design software) [24]. - Companies should build long-term agreements for certification and procurement, while material firms need to integrate into automotive battery technology roadmaps [23][24].
欧阳明高解析中国新能源汽车发展:从电动化、智能化到低碳化的未来之路
Huan Qiu Wang Zi Xun· 2025-07-03 05:41
Core Insights - The lecture by Ouyang Minggao focused on the revolution of China's new energy vehicles, discussing the transition from policy-driven to technology-led development in the industry [3][4]. Group 1: Electric Vehicle Development - Ouyang highlighted three stages of development: the electric vehicle era, the intelligent electric vehicle era, and the new energy intelligent electric vehicle era, emphasizing the importance of power battery technology as the core of success in China's new energy vehicles [3][4]. - The lecture detailed the technical principles and application scenarios of power electrification, vehicle intelligence, and low-carbon energy development, along with the future trends in these areas [3][4]. Group 2: Battery Technology - The presentation included an in-depth analysis of lithium battery structures and the electrochemical processes involved, addressing safety design challenges and innovations in solid-state battery technology, particularly the sulfide solid electrolyte route [3][4]. - Ouyang noted that existing new energy passenger vehicles reduce carbon emissions by approximately 15 million tons annually compared to traditional fuel vehicles, which is significant for achieving carbon neutrality goals [6]. Group 3: Intelligent Driving - The discussion on intelligent driving indicated that it has entered a popularization phase, becoming a key consideration for consumers when purchasing vehicles [4]. - Ouyang analyzed the evolution of intelligent driving technology, the performance advantages and limitations of various sensors, and the need for improved safety regulations and standards in China [4]. Group 4: Future Energy Trends - Ouyang projected that breakthroughs in energy storage, hydrogen energy, and intelligent technologies will lead to a new energy 3.0 era, where new energy becomes the mainstay of energy consumption [6]. - He mentioned that perovskite solar cells are driving a new wave of technological change in solar energy, with conversion efficiencies exceeding 40%, which could significantly enhance the energy efficiency of electric vehicles [6]. Group 5: Industry Interaction - The event attracted over 700 participants from various sectors, fostering discussions on battery safety, heavy-duty vehicle battery swapping, and talent cultivation in the industry [8]. - Ouyang encouraged interdisciplinary research and emphasized the importance of perseverance in foundational research and scientific exploration [8].
钙钛矿能否照亮光伏未来
Jing Ji Ri Bao· 2025-07-02 22:05
Core Viewpoint - Perovskite solar technology is emerging as a potential game-changer in the photovoltaic industry, offering higher efficiency and lower production costs compared to traditional silicon-based solar cells [1][2][3]. Group 1: Technology and Efficiency - Perovskite materials can be artificially adjusted to optimize the absorption of different wavelengths of sunlight, with theoretical efficiencies exceeding 30% for single-junction cells and over 40% for tandem cells, significantly surpassing the approximately 27% efficiency of silicon cells [2][3]. - The production process for perovskite solar cells is simpler and more efficient, allowing for faster manufacturing and potentially lower production costs [2][3]. Group 2: Market Potential and Applications - The lightweight, flexible, and semi-transparent characteristics of perovskite solar cells open new applications beyond traditional solar power plants, including building-integrated photovoltaics, wearable energy devices, and automotive rooftops [2][3]. - The integration of perovskite technology with existing silicon-based infrastructure is expected to facilitate rapid market entry and expansion [4]. Group 3: Industry Progress and Challenges - Major companies, including GCL-Poly, LONGi Green Energy, and Trina Solar, are investing in perovskite-silicon tandem cell research, with some already establishing production lines [3][4]. - Despite its potential, perovskite technology faces challenges such as stability under environmental stressors and the need for a mature supply chain for specialized materials and equipment [3][4]. Group 4: Future Outlook - The next few years are critical for validating the commercial viability of perovskite technology, with key factors including production yield, cost reduction, and long-term reliability [4]. - Industry consensus suggests that perovskite technology could disrupt the traditional photovoltaic market if stability issues are resolved, positioning it as a mainstream solution in the long term [4].
“液态阳光”,释放西部能源红利
Ke Ji Ri Bao· 2025-07-02 18:39
为响应国家能源转型重大需求,兰州大学成立氢能与低碳中心,旨在探索更多能源利用的途径,构建西 部氢能发展共同体。 "我们提出将太阳能转化为燃料或化学品加以利用,从而通过适宜技术高效、便捷地使用绿电。"李灿表 示,从利用新能源电力制氢到储氢、运氢、用氢等不同环节,可能带动上万亿规模的产业。 "但氢气气体密度很低,储存运输非常麻烦,将水直接电解为氢气进行储运难以落地。"李灿表示,"液 态阳光"作为解决方案,既契合了工业减碳目标,又可实现氢能源的高效储存和运输。 "液态阳光"技术在甘肃省成功实施全球首套千吨级甲醇规模化合成示范工程,并通过鉴定;2024年,全 球首个10万吨级"液态阳光"燃料合成项目在内蒙古鄂尔多斯正式启动建设,该技术进入产业化阶段。 ◎本报记者 张佳星 在甘肃敦煌的广阔沙地上,矗立着一座260米的高塔,它的周围环绕着12000多面定日镜。利用太阳能, 这座熔盐塔式光热电站能够24小时不间断发电。 把太阳能转化为电能是西部独有的"能源红利",有了丰沛的电能,高效率、大规模的电解水制氢气成为 可能。 "我们早在2018年合作研发成功的碱水电解槽,每小时可生产一千立方米氢气,与当时国际先进技术比 肩。"在 ...
机械行业周报2025年第26周:马斯克肯定OptimusV3表现,工程机械内需边际回落-20250630
EBSCN· 2025-06-30 06:14
2025 年 6 月 30 日 行业研究 马斯克肯定 Optimus V3 表现,工程机械内需边际回落 ——机械行业周报 2025 年第 26 周(2025.6.23-2025.6.29) 机械行业 买入(维持) 作者 分析师:黄帅斌 执业证书编号:S0930520080005 0755-23915357 huangshuaibin@ebscn.com 分析师:陈佳宁 执业证书编号:S0930512120001 021-52523851 chenjianing@ebscn.com 分析师:汲萌 执业证书编号:S0930524010002 021-52523859 jimeng@ebscn.com 分析师:李佳琦 执业证书编号:S0930524070006 021-52523836 lijiaqi@ebscn.com 要点 重点子行业观点 人形机器人: 6 月 23 日,由央视报道北京通用人工智能研究院、北京大学等单位组成的联合科研 团队,研发出全球首个兼具全手高分辨率触觉感知和完整运动能力的机器人仿生灵 巧手(F—TAC Hand),该灵巧手手掌表面 70%区域都覆盖着高分辨率触觉传感器, 空间分辨率可以达到 ...