Agent

Search documents
扣子空间一手实测:字节的第一个Agent,比Manus如何?
Founder Park· 2025-04-21 12:23
字节的 Agent 产品来了。 4 月 18 日晚间,字节跳动扣子空间开启内测,定位通用 Agent。与其他类似产品如 manus 一样,扣子空间采用了邀请码制。 平台上,用户可以选择精通各项技能的「通用实习生」,也可以选择行业的「领域专家」,通过与 AI 的互动完成工作任务。 就在前一天,火山引擎刚刚面向企业市场推出 OS Agent 解决方案及 AI 云原生推理套件,要帮企业更快、更省地构建和部署 Agent 应用。 扣子有探索和规划两种模式,如果想让它一步到位输出,可以选择探索模式;如果想亲自把控每个步骤,可以选择规划模式。 虽然采用了邀请码制,但扣子显然不是走饥饿营销的路线。用户激活获得的邀请码后,创建并完成一个新任务即可获得 5 个邀请码,邀请码激 活后,还可获得更多邀请资格,多创建多获得多邀请。 上线的第一时间,极客公园就上手实测了扣子空间的 Agent 功能。可以看到,在执行的三个任务中,制定旅游攻略和一周穿搭的任务顺利完 成,但另一个专家助手的任务,却出现了 Python 脚本调用失败、 API 权限异常等 Bug,一个晚上都没能执行成功。 字节迈出了走向 Agent 时代的第一步,但距离完美 ...
复盘字节扣子空间开发历程:瞄准工作场景,做一个 Agent 系统
晚点LatePost· 2025-04-21 09:36
ChatGPT 让聊天窗成为大模型应用首选的交互界面。理由是当 AI 足够聪明,似乎就不需要用户学 习,不用熟悉按钮和菜单、只用自然语言下命令就够了。 字节在 2023 年下半年搭起 AI 应用开发平台 "扣子(Coze)",让开发者不需要熟悉复杂的技术能 力,就能将自己的数据接入最前沿的大模型,做各式各样的应用。到 2024 年中,扣子团队发现,尽 管聊天机器人应用成千上万地出现,从知识问答到情感陪伴,覆盖几乎所有热门的场景,但大多面临 相同的问题:用户增长难,留存更难。 这是一个产品形态与用户真实需求形成偏差的案例。聊天界面简单易用,但对大模型要求极高,导致 不论中美都是一两个通用 AI 聊天应用断层式领先。扣子团队发现,平台上有一类应用的增长和留存 明显更好——嵌入到用户工作流的大模型应用,针对具体工作场景解决具体问题。 这成为他们去年下半年的工作重点。用大模型改造工作流,在工作场景中完成繁琐的任务,正是当下 行业热议的 Agent 初始形态。 大厂团队开发 AI 产品的样本。 4 月 18 日周五晚,字节的 Agent 产品 "扣子空间(space.coze.cn) " 开启内测。团队为此准备不少算 ...
计算机行业周报:Agent,从“单点工具”到“数字员工”
Tebon Securities· 2025-04-20 01:23
Investment Rating - The report maintains an "Outperform" rating for the computer industry [2][13]. Core Insights - OpenAI has launched two groundbreaking AI models, o3 and o4-mini, enhancing multimodal and tool usage capabilities, marking a shift from language models to task agent models [6]. - The integration of image reasoning and tool usage allows these models to manipulate images during reasoning, significantly broadening AI application scope [6]. - The performance of o3 and o4-mini has set new benchmarks in various fields, including programming and visual perception, with o4-mini achieving a high score of 99.5% in AIME 2025 tests [7]. - The pricing structure for OpenAI's models indicates a competitive market positioning, with o3 priced at $10 per 1M tokens for input and o4-mini at $1.1 per 1M tokens [7]. - The report suggests that 2025 may be a pivotal year for the development of AI agents, with increasing computational demands expected as AI applications deepen [9]. Summary by Sections Market Performance - The computer industry has shown a significant performance trend, with a noted decline of 27% in the past year compared to the Shanghai and Shenzhen 300 index [3]. Related Research - Several related reports have been published, focusing on the recovery of domestic stocks post-external shocks, the resurgence of domestic products, and improvements in supply-demand dynamics within the industry [4]. AI Tools and Agents - The introduction of WeChat's AI assistant "Yuanbao" enhances the capabilities of agents within the WeChat ecosystem, potentially increasing AI application penetration in daily life [9]. - The MCP and A2A protocols are expected to facilitate seamless communication and collaboration among different AI agents, enhancing their functionality and efficiency [9]. Investment Recommendations - The report recommends focusing on various sectors, including AI tools, AI agents, multimodal AI, and AI computing power, highlighting specific companies within each category for potential investment opportunities [9].
火山总裁谭待:很多Agent的能力还停留在类似自动驾驶的L1阶段
news flash· 2025-04-17 11:17
Core Viewpoint - The development direction of the industry is to create Agents with advanced reflection, planning, and autonomous decision-making capabilities, moving beyond the current basic level of many Agents [1] Group 1: Agent Development - The foundation for building Agents is deep thinking models, which must possess the ability to think, plan, and reflect [1] - Agents should support multimodal capabilities, similar to human visual and auditory functions, to better handle complex tasks [1] Group 2: Product Launch - The Doubao 1.5 deep thinking model was officially launched, showcasing strong performance in general tasks such as mathematics, programming, scientific reasoning, and creative writing [1] - A visual version of the deep thinking model was introduced, which has visual reasoning capabilities, allowing it to associate and think about what it sees like a human [1]
北京最火独角兽,要IPO了
投中网· 2025-04-15 06:57
将投中网设为"星标⭐",第一时间收获最新推送 这一天,投资人期待已久。 作者丨 刘燕秋 来源丨 投中网 2022 年底, ChatGPT 席卷世界,由此点燃了国内轰轰烈烈的大模型创业投资热潮。两年过去,一度跑出大模型"六小虎",如今这些公司各自有了不 同的走向。 其中,李开复创立的零一万物已与阿里云成立"产业大模型联合实验室",不再追求训练超级大模型,转而训练参数适中的更快、更便宜的模型,基于后 者打造可以赚钱的应用。 MiniMax 转向多模态模型,百川深耕医疗业务,月之暗面 Kimi 则将推出首个内容社区产品。众多国资加持的智谱,将成为 率先走向资本市场的那个。 无论未来如何,眼下二级市场的热情已经被点燃,和智谱有关的概念股行情眼看又要起势。 4 月 15 日,与智谱在多个项目上展开战略合作的思美传媒 收获了一个涨停,尽管这家公司此前在回答投资者提问时表示,"该合作对公司财务状况及经营成果影响很小"。 清华学霸组团创业 在大模型"六小虎"中,出身清华的创业者占据了一半席位。 智谱由清华大学计算机系的技术成果转化而来,源自成立于 1996 年的清华大学知识工程( KEG )实验室。该实验室专注研究网络环境下 ...
一堂「强化学习」大师课 | 42章经
42章经· 2025-04-13 12:01
曲凯: 今天我们请来了国内强化学习 (RL) 领域的专家吴翼,吴翼目前是清华大学交叉信息研究院助理教授,他曾经在 OpenAI 工作过,算是国内最早研究强化学 习的人之一,我们今天就争取一起把 RL 这个话题给大家聊透。 首先吴翼能不能简单解释一下,到底什么是 RL? 因此,RL 其实更通用一些,它的逻辑和我们在真实生活中解决问题的逻辑非常接近。比如我要去美国出差,只要最后能顺利往返,中间怎么去机场、选什么航 司、具体坐哪个航班都是开放的。 但 RL 很不一样。 RL 最早是用来打游戏的,而游戏的特点和分类问题有两大区别。 第一,游戏过程中有非常多的动作和决策。比如我们玩一个打乒乓球的游戏,发球、接球、回球,每一个动作都是非标的,而且不同的选择会直接影响最终的结 果。 第二,赢得一场游戏的方式可能有上万种,并没有唯一的标准答案。 所以 RL 是一套用于解决多步决策问题的算法框架。它要解决的问题没有标准答案,每一步的具体决策也不受约束,但当完成所有决策后,会有一个反馈机制来评 判它最终做得好还是不好。 吴翼: RL 是机器学习这个大概念下一类比较特殊的问题。 传统机器学习的本质是记住大量标注过正确答案的数据对。 ...
吴明辉:DeepSeek之后,每一家公司都是Agent
混沌学园· 2025-04-02 08:32
Core Viewpoint - The future of marketing will shift from being human-centric to model-centric, as AI agents like Manus may become integral to everyday operations [1][2]. Group 1: Opportunities from Large Models - The capabilities of large models, such as DeepSeek-R1, have improved tenfold, presenting significant opportunities for businesses [2]. - Many companies struggle to utilize these models effectively, primarily due to issues like hallucination, which can be turned into entrepreneurial opportunities by leveraging proprietary data [2]. Group 2: Understanding Agents - An "Agent" in the business context can be seen as a representative that serves either supply-side or demand-side interests, with both paths offering substantial opportunities [3][4]. - Manus exemplifies a successful agent by connecting various tools and resources to enhance operational efficiency [5]. Group 3: Building a Company as an Agent - Companies can be deconstructed into four components: perception system, cognitive system, action system, and goals, to transform into an effective agent [6]. - The perception system should incorporate feedback from frontline employees to enhance decision-making and operational efficiency [8][10]. Group 4: Cognitive System - The cognitive system should focus on high-frequency decision-making and leverage AI to improve organizational efficiency [12][14]. - High leverage in decision-making is crucial and should be based on real-time data from frontline interactions [15][17]. Group 5: Action System - In knowledge-intensive industries, the action system is represented by AI, which can automate processes through APIs and RPA [18][19]. - Manus serves as a complex agent that can execute commands and streamline operations across the organization [19]. Group 6: Goals and Feedback Loops - The primary goal of any company is to understand and meet customer needs, creating a feedback loop that enhances responsiveness [20][21]. - Companies should continuously iterate and upgrade their systems to adapt to changing demands and improve efficiency [23]. Group 7: Strategic Recommendations for Entrepreneurs - Entrepreneurs should upgrade their teams and protect core data while focusing on marketing towards large models rather than just individuals [25][26]. - Product design should anticipate a future where robots and smart devices may replace human interaction, necessitating a shift in design philosophy [26].
对话飞虎互动:金融行业AI智能体怎么做
Tai Mei Ti A P P· 2025-03-31 03:52
石海东告诉钛媒体App:"DeepSeek不仅在大模型推理成本和推理能力实现了极大优化。更重要的是, 对于各行业客户而言,过去对大模型存在负面印象,包括幻觉、训练数据等偏见和缺陷性问题, DeepSeek正在抹除这部分担心。这进一步推动了深度垂直智能体的落地。" 未来会有大量专业Agent,而不是只有一个超级Agent 相较于通用型Agent,面向B端垂直场景的Agent其机会窗口正在扩大。春节过后,DeepSeek的出圈,中 国有至少60家银行相继宣布对接了DeepSeek,但基本面向投资者的投研报告、财报分析、客户资料分 析报告等非核心业务场景,亦或者是OA、办公自动化,IT代码开发等非业务场景。 与一些企业或厂商先高调发声再选择行动不同的是,飞虎互动深入金融行业的Agent这件事情已经一年 有余。目前围绕金融银行三大关键环节:营销-风控-交易,飞虎互动构建了三款大模型驱动的Agent用 例,包括对客营销机器人,风控合规机器人,交易服务机器人。 飞虎互动公司创始人董事长石海东及团队与钛媒体交流中指出,AI大模型在银行业务价值和落地优先 级高的其实是在营销、风控领域,目前DeepSeek还没有接入到这些领域 ...
用友网络(600588):转型阶段整体承压 AI赋能后续成长
Xin Lang Cai Jing· 2025-03-31 00:31
Core Viewpoint - The company reported a decline in total operating revenue and an increase in net loss for 2024, indicating ongoing challenges during its transformation phase [1][2]. Group 1: Financial Performance - In 2024, the company achieved total operating revenue of 9.153 billion, a year-on-year decrease of 6.6% [1]. - The net profit attributable to shareholders was a loss of 2.061 billion, which is an increase in loss by 1.09 billion compared to 2023 [1]. - The actual revenue was in line with the forecast median, while the actual loss slightly exceeded the forecasted net loss range of 1.72-1.92 billion [1]. Group 2: Revenue Drivers - The decline in operating revenue was primarily due to a temporary delay in customer demand and a decrease in signed amounts [1]. - The transition to a subscription business model has impacted short-term overall revenue [1]. - The increase in losses was attributed to higher amortization of capitalized intangible assets, increased employee compensation due to layoffs, and higher goodwill impairment losses [1]. Group 3: Cloud Transformation and AI Strategy - In 2024, the cloud service business generated revenue of 6.85 billion, a year-on-year decrease of 3.4%, while subscription revenue grew by 26.0% [2]. - The company reported contract liabilities of 3.05 billion, an increase of 8.8% from the end of 2023, with cloud-related contract liabilities growing by 13.0% [2]. - The company launched the enterprise service model YonGPT2.0, focusing on AI and agent technologies to bridge complex enterprise needs with general models [2]. Group 4: Future Outlook - The company maintains an "overweight" rating despite adjusting profit forecasts for 2025-2026 due to lower-than-expected client investment and ongoing transformation impacts [3]. - Projected revenues for 2025-2027 are 10.51 billion, 12.19 billion, and 14.18 billion, respectively, with net profits of 0.1 billion, 0.41 billion, and 0.84 billion [3]. - The company is expected to benefit from the successful advancement of its cloud and AI initiatives, with a clear industry position and potential for long-term growth [3].
从Copilot到Agent:AI编程的范式革新
Western Securities· 2025-03-12 11:16
行业点评 | 计算机 从 Copilot 到 Agent:AI 编程的范式革新 AI Coding 正在成为 Agent 商业化的突破口。我们认为编程领域的规则明确 性为 Agent 应用提供了天然约束框架,编程环境的技术特性为 Agent 自纠错 提供了理想试验场,同时编程原子化任务与大模型链式推理机制深度契合。 而在需求端,企业开发效率的刚需则创造了明确付费意愿,AI 编程领域已逐 步形成"技术验证-产品迭代-商业变现"的完整闭环。 AI 大模型在编程中的应用发展分为"Copilot→Agent→Multi-Agent"三个 阶段,目前各大厂商 AI coding 产品多处于第一阶段向第二阶段迈进的关键 节点。1)第一阶段:LLM as Copilot。大模型作为 Copilot,辅助程序员完 成任务,但并不改变软件工程的专业分工。2)第二阶段:LLM as Agent。 Agent 能够自主完成一部分任务,成为一个单一职能专家,能够自主使用工 具完成预定的任务。人在这个阶段的作用是给定上下文完成知识对齐。3) 第三阶段:LLM as Multi-Agent。多智能体互相协作完成复杂任务,人类则 负责创意 ...