云计算

Search documents
华为:昇腾芯片,盘古大模型5.5发布
是说芯语· 2025-06-20 09:59
盘古CV大模型升级为业界最大的300亿参数MoE视觉大模型,并支持多维度泛视觉感知、分析和决策。 中国石油"昆仑大模型"在装备制造领域攻克亚毫米级缺陷识别难题,效率提升约40%。 盘古科学计算大模型加速拓展与更多科学应用领域的结合,如基于盘古大模型的深圳气象局"智霁"实现 AI集合预报,重庆气象局"天资·12h"强化灾害预警,能源企业通过盘古大模型提升风光水发电预测精 度。 "一年以来,盘古大模型深入行业解难题,在30多个行业、500多个场景中落地。"6月20日下午,在华为 开发者大会2025上,华为常务董事、华为云计算CEO张平安分享了盘古大模型在工业、农业、科研等领 域的丰富创新应用和落地实践,并重磅发布盘古大模型5.5,自然语言处理、多模态等5大基础模型全面 升级,加速重塑千行万业。 △盘古大模型5.5正式发布 在自然语言处理方面,盘古NLP大模型发布718B MoE混合专家模型,在知识推理、工具调用等领域达 到业界第一梯队,在高效长序列、低幻觉、快慢思考融合、Agent等特性上进行升级,提升用户体验。 盘古大模型基于昇腾云的全栈软硬件训练,这标志着基于昇腾可以打造出世界一流大模型。 基于盘古多模态大模 ...
合合信息推出AI Agent云资源智能管理终端,可实现“一句话管理千台服务器”
Huan Qiu Wang· 2025-06-20 09:02
【环球网科技综合报道】6月20日消息,近日,在2025亚马逊云科技中国峰会上,上海合合信息科技股份有限公司(以下简称"合合信息")发布了业内首个 AI Agent跨平台云资源智能管理终端Chaterm。该解决方案通过构建"对话式终端管理工具",为云计算从业人士开辟云资源智能化和规模化管理新路径,目 前其核心代码已全面开源。 而针对大规模的服务器管理痛点,与其他智能CLI Agent相比,Chaterm搭载了批量管理远程服务器的能力。其通过自动"记忆"用户的操作习惯,用户无需 ROOT权限,即可在任意远程主机上实现个性化的语法高亮或自定义的快捷命令,实现"一次配置,多端通用"的便捷体验。同时,Chaterm还具有跨平台兼 容性,可一键安装,支持MAC,WINDOWS,LINUX等操作系统,以此降低企业混合IT环境下的运维管理复杂度。 值得一提的是,在数据安全方面,为了保护用户隐私,合合信息宣布全面开源Chaterm核心代码。基于此,开发者可以直接观察算法底层运行逻辑,并根据 实际需求进行定制化修改,实现云资源管理领域"透明可控,安全可信"。随着Chaterm的正式发布,合合信息方面表示,将继续探索AI技术与产业 ...
亚马逊云现场一手
小熊跑的快· 2025-06-20 08:13
Group 1 - The release of Claude 3.7 and 4 has positioned it as a strong competitor to OpenAI's O1 series models, with daily token usage nearly equalizing [1] - There is a clear division in the model ecosystem, with AWS not promoting OpenAI's GPT series and Google Cloud supporting Claude while avoiding GPT series [2] - Trainium 2 can currently support a 60,000 card cluster, and its promotion is aggressive, while Inferentia has not seen updates for a long time, with Trainium 3 expected by year-end [3] Group 2 - Amazon is recognized as the largest and most reliable cloud provider based on CPU computing, continuously reducing costs [4] - There are three layers for application development: GPU-based SageMaker, integrated platform for basic model API calls called Bedrock, and a high-level user interface referred to as Q [4]
荣耀将发布全球最轻薄折叠屏手机;“星舰”火箭在静态点火测试中发生爆炸丨智能制造日报
创业邦· 2025-06-20 03:07
Group 1 - SpaceX's "Starship" rocket experienced an explosion during a static fire test, with investigations ongoing and no reported casualties [1] - Alibaba Cloud announced the launch of its second data center in South Korea to meet the growing demand from the rapid development of generative AI, expanding its global presence to 29 regions and 88 availability zones [2] - Alipay+ introduced the first embedded global payment solution for smart glasses, completing the first electronic wallet payment transaction based on smart glasses in Hong Kong [3] Group 2 - Honor's CEO announced the upcoming release of the world's thinnest foldable smartphone, Magic V5, on July 2, which will feature advanced AI capabilities and interconnectivity across brands [4]
亚马逊云科技:Agentic AI时代即将开启!
Sou Hu Cai Jing· 2025-06-20 00:59
Core Insights - The Amazon Cloud Technology China Summit highlighted the emergence of Agentic AI as a focal point for innovation and business transformation in the current uncertain era [3][4] - Amazon Cloud Technology aims to assist Chinese enterprises in expanding globally while leveraging local cloud services to drive business growth and AI innovation [4][11] Group 1: Agentic AI and Business Transformation - The development of AI has reached a turning point, with Agentic AI poised to significantly enhance customer experience, innovate business models, and improve operational efficiency [3][6] - Companies must prepare both management and technology aspects to seize the opportunities presented by the Agentic AI revolution [3][7] - Agentic AI is seen as a key engine for enterprise transformation, enhancing employee productivity and driving business model innovation [6][12] Group 2: Strategic Framework and Implementation - Companies should establish a clear cognitive framework and top-level planning while optimizing organizational processes and upgrading talent structures [7] - Four foundational pillars are essential for companies: security compliance, system resilience, architectural scalability, and technological foresight [7] - A pragmatic strategy for implementation is crucial, including setting realistic expectations and building a robust partner ecosystem [7] Group 3: Infrastructure and Technological Advancements - Amazon Cloud Technology has made significant investments in infrastructure, including the Graviton4 processor, which improves database application performance by 40% and large Java application performance by 45% [8][10] - The company has built a global infrastructure network covering 245 countries and regions, offering over 240 full-stack cloud services [10] - Amazon Cloud Technology provides a leading pre-trained model library and a comprehensive development toolchain to lower the barriers to AI innovation [10] Group 4: Globalization and Local Innovation - Amazon Cloud Technology's "three horizontal and one vertical" service architecture supports Chinese enterprises in navigating compliance risks and technological pressures in global markets [11] - The newly released Agentic AI practice guide offers a comprehensive methodology to help enterprises overcome AI application development bottlenecks [11][12] - The combination of technological empowerment and strategic consulting is driving the evolution of China's AI innovation ecosystem towards greater resilience and sustainability [12]
从1500个项目里,看见中国AI的未来
36氪· 2025-06-20 00:33
生成式AI的2025: 告别PPT,拥抱生产力革命。 就在现在,拿起手机,打开电商购物网站,搜索"充电器",大概率弹出的第一个推荐品牌是安克创新。 如果你看中了其中哪一款产品,想要问价比价、咨询参数,你会点击客服,线上咨询。 你可能不知道的是,就只是这短短的2个操作,有多少AI大模型能力参与其中。 在6月19日的2025亚马逊云科技中国峰会上,知名智能硬件科技品牌安克创新首席创新官龚银分享了如何在亚马逊云科技技术的帮助下,利用AI创新智能产 品,提升公司运作效率。 安克创新与亚马逊云科技建立了高质量实时知识库大语言模型系统,搭建了50多个Al Agent;搭建了多模态AIGC内容生产平台Vela;搭建了融合Amazon SageMaker平台的智能广告系统,站内广告覆盖率超过90%;通过深度学习算法与AI大模型进行产品开发与升级…… 广告投放、物料生成、客服回复、产品升级……有多么前沿黑科技?一点也不。 但有用吗?太有用了。 当前,安克创新的内容生产平台Vela出图数量已经超过120万张、客服工单AI解决率超过70%、站内超过20%以上的广告由AI全自动托管;安克创新内部公 司级的AI能力底座——AIME平台 ...
59%的AI,都死在了路上
虎嗅APP· 2025-06-19 11:55
Core Viewpoint - The generative AI industry is at a critical juncture, facing the risk of a bubble burst or the potential to transform the world. Current data indicates that only 41% of generative AI pilot projects are expected to successfully transition to production by 2024, with 59% failing to materialize [1][2]. Group 1: Industry Challenges - The gap between technological capability and practical application remains a significant hurdle, with the potential for a long-term decline if current trends continue [1]. - Historical AI bubbles have shown that while technology matures, many projects still fail due to misalignment with business needs and lack of clear value [7][10]. Group 2: Amazon's Strategic Initiatives - Amazon Web Services (AWS) established a secret organization, the Generative AI Innovation Center, to assist clients in developing generative AI strategies and solutions, resulting in over 1,500 project requests and an 82% success rate in moving from proof of concept to production [3][4]. - AWS has successfully navigated the "Gartner Valley of Death" by leveraging its innovation center's expertise and client collaboration [3][4]. Group 3: Lessons Learned from Failed Projects - Common pitfalls leading to project failures include: - Incorrect scenario selection, where companies pursue AI for the sake of AI without quantifying the value [7]. - Model mismatch, where businesses opt for the largest or most expensive models without considering specific use case requirements [8][9]. - Unclear ROI, leading to hesitance in project initiation due to lack of visible value [10]. - Absence of a feedback loop for project outcomes, resulting in silent project failures [11]. Group 4: Recommendations for Success - Companies should adopt a dual approach: top-down management support and bottom-up technical readiness, ensuring alignment between business goals and AI capabilities [14]. - AWS emphasizes the importance of evaluating projects against seven dimensions and leveraging eleven mature scenarios to enhance success rates [15]. - A systematic approach to technology selection across model, data, and technical solution layers is crucial for project viability [15]. Group 5: AWS's Competitive Advantage - AWS stands out as a leading cloud service provider with extensive global reach, offering a comprehensive suite of AI capabilities and infrastructure [20][21]. - The company has committed approximately $100 billion to AI project development, enhancing its service offerings and maintaining its market leadership [21][22].
AI需求:全球算力产业链
2025-06-19 09:46
AI 需求:全球算力产业链 20250618 摘要 Q&A 在当前背景下,全球算力产业链有哪些投资机会? 当前背景下,全球算力产业链的投资机会主要集中在两个方面。首先是云计算 产业链,这一领域近年来加速渗透,尤其是在美国市场。B 端企业首选的 API 基本都是云计算 API。今年(2025 年)2 月份时,OBE 的收入约为 Cloud 的 4.5 倍,但到今年(2025 年)5 月份时,OBE 的收入已缩小至 Cloud-A 的 3.5 倍。这表明双方收入差距正在进一步缩小。今年以来,海外市场最亮眼的 是 Cloud 的普及。大量公司开始意识到云计算带来的影响,例如亚马逊计划将 AI 自动化引入工作中,提高效率并可能减少员工数量。 其次是 OpenAI 用户数 上升对算力需求的推动。从今年(2025 年)的数据来看,今年年初欧贝云日 活跃用户数约为 2 亿,到现在已增长至 3.5 亿至 4 亿之间,实现了 70%以上的 大幅增长。同时,我们观察到新增算力需求不一定导向微软云,大部分可能流 向甲骨文和 CoreView。因此,在这条产业链中,以 OBI 最新合作伙伴为代表 的新兴公司存在较大投资机会。 为什么 ...
大摩北美IT硬件数据追踪:App Store 仍跑赢市场预期,甲骨文(ORCL.US)引爆云计算资本支出
智通财经网· 2025-06-19 09:22
智通财经APP获悉,大摩的追踪数据显示,App Store 年初至今净收入同比增长 12.5%,超出该行对第二 季度的预测 150 个基点,并相当于服务业务超预期 40 个基点。大摩将2025年全球云资本支出预测上调 至4060亿美元(同比增长43%),较1个月前预测提升4个百分点(新增140亿美元)。增长由甲骨文 (ORCL.US)和阿里巴巴的上调驱动。 最后数据还显示,笔记本电脑ODM的订单交付量显示第二季度出货量略有上行空间,但第三季度展望 较为疲软。 甲骨文对 2026 财年资本支出的上调以及阿里巴巴此前被低估的资本支出共识修正,推动了整体云资本 支出的增长。这不仅反映出云计算领域持续的扩张态势,也显示出行业巨头在战略布局上的积极投入, 进一步巩固和拓展其在云计算市场的份额与影响力。 在个人电脑领域,数据呈现出较为复杂的局面。一方面,笔记本电脑ODM的最新订单交付量显示出第 二季度个人电脑出货量略有上行空间;但另一方面,2025 年下半年的需求存在高度不确定性,第三季度 展望较为疲软。具体来看,第三季度笔记本电脑出货量较预测低 10%,而初始的第三季度笔记本电脑 原始设计制造商订单交付量低于正常季节性 ...
从“我问AI答”到“我说AI做”:Agentic AI迎来爆发前夜 如何加速从概念迈向实用?
Mei Ri Jing Ji Xin Wen· 2025-06-19 09:22
储瑞松指出,在过去一年,大模型的能力在各个维度都实现了跨越式发展。就连在今年1月推出的HLE(Humanity's Last Exam,一项权威基准测试)上,模 型正确率也从刚开始的个位数,迅速发展到如今已经超过20%。 每经记者|张梓桐 每经实习编辑|余婷婷 "过去一年,机器智能已经爆发了,如今AI(人工智能)的发展又来到了一个拐点,我们正处在Agentic AI(代理式人工智能)爆发的前夜。"6月19日,在亚 马逊云科技中国峰会上,亚马逊全球副总裁、亚马逊云科技大中华区总裁储瑞松表示。 "正如历史上蒸汽机的出现放大和解放了人与动物的肌肉力量,通过在纺织、交通、采矿和冶炼等领域的应用带来了工业革命。机器智能的爆发则放大和解 放了人的大脑智力,其应用也将带来Agentic AI的革命。"储瑞松说。 如他所言,AI落地的场景正在扩张到汽车、零售、电商、医药等多个场景。"人工标注曾是车企研发的'卡脖子'环节。"亚马逊云科技汽车行业解决方案负责 人在展位接受《每日经济新闻》记者采访时表示,辅助驾驶研发依赖海量路采数据标注,而传统人工处理存在"效率低、成本高"的痛点。 | | | --- | | | | | | 辅助 ...