Workflow
智能体
icon
Search documents
区域型银行如何实现AI战略突围?
麦肯锡· 2025-06-11 09:24
Core Viewpoint - The competition for generative AI in regional banks has shifted from technological exploration to value realization, making it essential for these banks to capture AI value and implement applications effectively [1]. Group 1: Current State of Generative AI in Banking - Generative AI applications are expanding from internal use to client-facing services, transforming operational models and customer service methods within banks [2]. - The emergence of multi-agent systems is providing comprehensive solutions that can cover complex processes, allowing generative AI agents to act as virtual colleagues [3]. Group 2: Impact on Profitability - Generative AI is expected to significantly enhance productivity across industries, with banking projected to see a potential productivity increase of $200 billion to $340 billion, translating to a 14%-24% potential profit increase, which could rise to 60%-80% over the next three years [4]. Group 3: Challenges in AI Adoption - Despite the apparent technological benefits, regional banks face significant barriers to large-scale AI application, including data silos and a shortage of hybrid talent, with an estimated talent gap of 5 million in China by 2030 [7]. - Regional banks must address three core questions: how to focus on high-value scenarios with limited resources, how to balance short-term wins with long-term strategies, and how to manage innovation and ecosystem collaboration [7]. Group 4: High-Value AI Application Scenarios - Six high-value AI application scenarios are emerging as key areas for regional banks to leverage AI capabilities, transitioning from experimental phases to growth drivers [8]. - These scenarios include credit risk management, customer relationship management, software development efficiency, intelligent customer service, hyper-personalized services, and knowledge management [10]. Group 5: Strategic Pathways for Regional Banks - Regional banks must choose between three strategic models: "builders" who deeply reconstruct core business, "innovators" who enhance middle and back-office processes, and "adopters" who focus on efficiency improvements [14]. - A comprehensive AI transformation framework is necessary, integrating AI with overall business strategy and ensuring that AI investments are directly linked to financial metrics [15][16]. Group 6: Collaboration and Ecosystem Development - Finding suitable ecosystem partners is crucial for regional banks to quickly develop strategies and implement use cases, allowing them to leverage existing solutions and accelerate their AI adoption [17]. - The future of banking will see AI not just as a tool for efficiency but as a core competitive advantage for enhancing customer service, optimizing risk management, and improving operational resilience [18].
AI生物学家诞生!我国学者开发元生智能体,自主发现抗癌新靶点并设计验证实验,能力超越人类专家和主流大模型
生物世界· 2025-06-11 09:22
Core Viewpoint - The discovery and identification of therapeutic targets remain a critical bottleneck in drug development, with over 90% of candidate drugs failing in clinical development due to flawed initial hypotheses regarding biological function, disease relevance, or druggability [2][3]. Group 1: Target Discovery Challenges - Traditional target discovery relies on disease biologists integrating various independent biomedical data to form testable hypotheses, which is a slow and costly process, often exceeding $2 million per target [2][3]. - The failure rate in clinical development is largely attributed to issues with the selected targets rather than the compounds themselves [2]. Group 2: Introduction of OriGene - A new multi-agent virtual disease biologist system named "OriGene" has been developed, focusing on target discovery and clinical translation value assessment, outperforming human experts and leading AI models in target discovery capabilities [2][3][9]. - OriGene autonomously discovered new targets for liver cancer and colorectal cancer, demonstrating its ability to generate original targets validated through experiments [3][27]. Group 3: System Features and Functionality - OriGene integrates over 500 expert tools and organized biomedical databases, supporting multi-modal reasoning across genomics, transcriptomics, proteomics, phenomics, and pharmacology [11][12]. - The system features a multi-agent collaborative decision-making architecture, including a Coordinator Agent, Planning Agent, Reasoning Agent, Critic Agent, and Reporting Agent, enabling a closed-loop autonomous scientific decision-making process [12][13]. Group 4: Performance Evaluation - A specialized benchmark test set for target discovery, TRQA, was created, covering 1,921 multi-dimensional validation questions, demonstrating OriGene's superior performance in accuracy, recall, and robustness compared to human experts and other AI models [18][21]. - The system's self-evolving capabilities allow it to improve its reasoning ability over time through iterative learning and feedback from experiments [14][16]. Group 5: Practical Validation - In liver cancer, OriGene identified G protein-coupled receptor GPR160 as a key target, showing significant expression in cancer tissues and potential as a new immune checkpoint [23]. - For colorectal cancer, the system selected arginase ARG2 as a target, confirming its high expression in cancer tissues and demonstrating effective tumor suppression in patient-derived organoid models [25][27]. Group 6: Implications for Drug Development - The research signifies a major advancement in using AI to accelerate therapeutic target discovery, providing a scalable and adaptable platform for identifying mechanism-based treatment targets [27]. - As generative AI models and biomedical data resources mature, frameworks like OriGene are expected to facilitate AI-driven end-to-end drug discovery, enhancing the potential for precision medicine [27].
GPTBots亮相WaytoAGI东京黑客松,展示企业级AI智能体创新落地成果
Ge Long Hui· 2025-06-11 08:16
Core Insights - GPTBots.ai successfully hosted the "WaytoAGI Global AI Conference - Tokyo 2025" hackathon, attracting over 300 developers from Japan and around the world, showcasing innovative solutions based on the GPTBots enterprise-level AI framework [1][2] Group 1: Hackathon Highlights - The hackathon featured four main competition areas: enterprise process automation, customer interaction, data analysis insights, and open innovation [2] - Notable projects included a marketing management platform for Web3 that analyzes social media sentiment, a nail design AI that reduces design time from hours to minutes, and a modular video production AI that cuts content production costs by 40% [2][4] Group 2: AI Framework Capabilities - The core capabilities of the GPTBots AI framework include large model integration, workflow orchestration, and RAG knowledge retrieval technology [5] - The framework supports practical case studies from customer service to data analysis, demonstrating scalable and secure enterprise AI deployment best practices [5] Group 3: Regional Innovation and Trends - The hackathon highlighted regional innovation differences, with Japanese teams focusing on retail services and Chinese developers excelling in Web3 and decentralized finance [7] - The event revealed three major trends in enterprise AI applications: automation of contract compliance, customized design, and market analysis and marketing optimization [8] Group 4: Accelerating AI Adoption - GPTBots facilitates rapid prototype development, secure deployment, and system integration, helping enterprises unlock AI value [8] - The event underscored the importance of scalable and adaptable enterprise AI solutions as a core competitive advantage for global companies aiming to enhance operational efficiency and drive innovation growth [8]
端到端GUI智能体首次实现“犯错-反思-修正”闭环,模拟人类认知全过程
量子位· 2025-06-11 08:07
端到端多模态GUI智能体有了"自我反思"能力!南洋理工大学MMLab团队提出框架GUI-Reflection。 随着多模态大模型的发展, 端到端GUI智能体 在手机、电脑等设备上的自动化任务中展示出巨大潜力。它们能够看懂设备屏幕,模拟人类去 点击按钮、输入文本,从而完成复杂的任务。 然而,当前端到端GUI多智能体的训练范式仍存在明显的瓶颈:当前模型往往使用几乎完美的离线演示轨迹进行训练,使得模型缺乏反思和改 正自身错误的能力,并进一步限制了通过在线强化学习激发和提升能力的可能。 GUI-Reflection 的核心思想是在智能体的各个训练阶段引入 "反思与纠错"机制 ,这一机制贯穿 预训练、监督微调和在线训练 全过程,模 拟了人类 "犯错→反思→重试" 的认知过程。 1. GUI预训练阶段: GUI-Reflection 团队 投稿 量子位 | 公众号 QbitAI 提出GUI-Reflection Task Suite任务套件, 将反思纠错能力进一步分解,让模型在预训练阶段框架让模型初步接触反思类任务,为后续打 下基础。 2. 离线监督微调阶段: 构建自动化数据管道,从已有离线无错轨迹中构建带有反思和纠错的 ...
国泰海通晨报-20250611
Haitong Securities· 2025-06-11 06:47
国泰海通晨报 2025 年 06 月 11 日 国泰海通证券股份有限公司 研究所 [Table_Summary] 1、高中教育受益人口红利与政策红利,有望进一步增加学位供给。 2、太力科技深耕家庭收纳用品领域,核心产品真空收纳袋在电商渠道份额领先、收入稳步增长, 垂直墙壁置物产品等产品快速放量,通过多元化渠道有效实现销售增长。 [汤蔚翔 Table_Authors] 电话:021-38676666 登记编号:S0880511010007 [Table_ImportantInfo] 今日重点推荐 行业深度研究:教育产业《职普融合,高中学位供给扩容》 2025-05-09 刘越男(分析师)021-38676666、宋小寒(分析师)021-38676666、许樱之(分析师)021-38676666 投资建议:高中教育需求刚性,仍具备 7-8 年人口红利期,政府支持扩大高中阶段教育学 位供给,引导规范民办教育发展,推进职普融通。高中教育相关公司受益政策与需求红利,推荐标 的:天立国际控股、学大教育;受益标的:凯文教育。 高中教育还有 7-8 年人口红利期,需求韧性强。以 2025 年为例,高中段适龄人口出生日期约 为 ...
汇智智能联手上市公司电魂网络,成立AI合资公司杭州魂域科技
Jin Tou Wang· 2025-06-11 06:19
Core Viewpoint - The collaboration between Jiangsu Huizhi Intelligent Digital Technology Co., Ltd. and Hangzhou Dihun Network Technology Co., Ltd. aims to leverage Huizhi's strengths in AI large models and intelligent agent technology to develop an AI intelligent agent scheduling platform through the newly established Hangzhou Hunyue Technology Co., Ltd. [1] Group 1: Company Strengths and Innovations - Huizhi Intelligent has developed the CarrotAI large model, which has achieved industry-leading levels in natural language processing, multimodal interaction, and continuous learning [1] - The proprietary "Digital Life" technology of Huizhi Intelligent overcomes traditional AI memory limitations, enabling intelligent agents to have long-term memory, knowledge inheritance, and continuous evolution capabilities, providing a unique competitive advantage in the industry [1] - The company has established a comprehensive product matrix in the intelligent agent technology sector, serving over 10 million C-end users and becoming one of the largest intelligent agent creation platforms in China [1] Group 2: Industry Applications and Ecosystem Development - Huizhi Intelligent has accumulated rich application experience across various vertical industries, including government governance, enterprise services, education and training, and cultural tourism e-commerce [3] - The company's innovative "technology-driven + scenario landing + ecological co-construction" model effectively transforms technical value into commercial value, laying a solid foundation for the rapid development of joint ventures like Hunyue Technology [3] - Huizhi Intelligent has launched an intelligent agent ecosystem initiative, planning to invest over 10 million in strategic funds to build an open, collaborative, and symbiotic ecosystem, aiming to empower practitioners across various industries [3] Group 3: Future Goals and Vision - The company aims to incubate 100 benchmark scenarios and cultivate thousands of ecosystem leaders in the second half of this year, building an intelligent agent application network covering millions of enterprises [4] - This initiative represents a revolutionary shift in industrial collaboration, making AI a tangible productivity tool accessible to all industry practitioners, aligning with Huizhi Intelligent's vision of "serving thousands of industries with intelligent agents" [4]
使用成本降至三分之一!字节大模型,重磅更新!
Zheng Quan Shi Bao· 2025-06-11 05:42
豆包大模型重磅升级,并推出创新性的"区间定价"模式,打响了一场平衡成本与性能的"价值战"。 6月11日,字节跳动旗下火山引擎举办Force原动力大会。会上,豆包大模型家族全面升级,火山引擎发布了豆包大模型1.6、豆包视频生成模型Seedance 1.0 Pro、实时语音与播客等新模型,并升级了Agent(智能体)开发平台等AI云原生服务。除了主论坛外,本次大会还将举办多场从技术革新到行业场景 落地的分论坛,涉及芯片、汽车、智能终端、软件应用等领域的众多企业合作伙伴。 综合来看,本次大会的核心关键词有三个,分别是性能升级、成本下降、应用普惠。性能升级上,权威测评成绩显示,豆包1.6—thinking的表现已跻身全 球前列;成本下降上,豆包1.6首创按"输入长度"区间定价,使综合使用成本降至豆包1.5深度思考模型的三分之一;AI普惠上,在性能与成本的双重加持 下,有望加速智能体的大规模应用落地。 豆包大模型1.6发布,性能跻身全球前列 会上,最受关注的当属豆包大模型1.6系列的重磅发布。 其中,豆包1.6是全功能综合模型,支持256K长上下文,能够自适应思考(即自动判断是否开启深度推理);豆包1.6—thinki ...
使用成本降至三分之一!字节大模型,重磅更新!
证券时报· 2025-06-11 05:31
6月11日,字节跳动旗下火山引擎举办Force原动力大会。会上,豆包大模型家族全面升级,火山引擎发布了豆包大模型1.6、豆包视频生成模型Seedance 1.0 Pro、实 时语音与播客等新模型,并升级了Agent(智能体)开发平台等AI云原生服务。除了主论坛外,本次大会还将举办多场从技术革新到行业场景落地的分论坛,涉及 芯片、汽车、智能终端、软件应用等领域的众多企业合作伙伴。 综合来看,本次大会的核心关键词有三个,分别是性能升级、成本下降、应用普惠。性能升级上,权威测评成绩显示,豆包1.6—thinking的表现已跻身全球前列; 成本下降上,豆包1.6首创按"输入长度"区间定价,使综合使用成本降至豆包1.5深度思考模型的三分之一;AI普惠上,在性能与成本的双重加持下,有望加速智能体 的大规模应用落地。 豆包大模型1.6发布,性能跻身全球前列 会上,最受关注的当属豆包大模型1.6系列的重磅发布。 豆包大模型重磅升级,并推出创新性的"区间定价"模式,打响了一场平衡成本与性能的"价值战"。 其中,豆包1.6是全功能综合模型,支持256K长上下文,能够自适应思考(即自动判断是否开启深度推理);豆包1.6—think ...
专访|让AI智能体真正“看懂”世界——访德国弗劳恩霍夫研究所数据专家
Xin Hua She· 2025-06-11 02:53
新华社柏林6月10日电 专访|让AI智能体真正"看懂"世界——访德国弗劳恩霍夫研究所数据专家 措恩指出,要实现更高程度的自主能力,AI智能体所依赖的基础模型必须具备接收并理解其所处环境 的能力,尤其是在涉及现实任务的场景中。"系统要在真实世界中运行,首先得真正'看懂'这个世 界。"他说,将高精度的三维场景数据与多路传感器数据输入模型,以便其在空间中进行推理和判断, 是当前人工智能研究的前沿方向之一,但这项工作仍面临诸多挑战。 "目前的大语言模型本质上是为处理文字而设计的,擅长语言理解与生成。"措恩说,"而来自现实世界 的感知数据,比如三维点云,只是一些无序的坐标集合,并不自带语义结构。"他表示,要让模型真 正"理解"这些数据,必须开发新的数据表示方式和训练机制,将"非语言"信息转化为模型能够真正识别 和处理的形式。 措恩还谈到了AI智能体应用过程中最本质的问题——信任。他认为,AI智能体之所以能够获得用户信 任,关键在于其决策路径具有高透明性和可审查性。与单一语言模型不同,AI智能体会将复杂问题拆 解为多个明确的小任务,每一步都有清晰的逻辑和执行过程,更容易被理解和验证。 "用户可以清楚看到智能体是如何逐步推 ...
未知机构:【公告全知道】创新药+机器人+AI智能体+脑机接口!公司参与设立新产品战略相关基金主要投资于创新药等领域-20250611
未知机构· 2025-06-11 01:55
【公告全知道】创新药+机器人+Al智能体+脑机接口! 公司 参与设立新产品战略相关基金主要投资于创新药等领域 公告全知道 2025.06.10 22:08 星期二 九州通:2024年全年每10股派2元 股权登记日为6月16日 九州通(600998.SH)公告称, 公司2024年年度权益分派方案已通过股东会审议。方案包括A股每股派发现金红利0.20元(含 税),股权登记日为2025年6月16日,除权(息)日为2025年6月17日,现金红利发放日也为2025年6月17日。公司回购专户中 的股份不参与本次利润分配。差异化分红送转方案显示,公司以权益分派股权登记日登记的总股本扣除回购专户股份为基数,向 全体股东每10股派发现金红利2.00元(含税)。 点评:资料显示,九州通是行业领先的科技驱动型的全链医药行业综合服务商,公司的主营业务涵盖医药流通、医药新零售、医 药工业、医药CSO等业态,包括数字化医药分销与供应链业务、总代品牌推广业务、医药工业自产及OEM业务、新零售与万店 加盟业务(C端)、医疗健康(C端)与技术增值服务、数字物流与供应链解决方案六大方面。公司是国内最大的民营医药商业 企业,也是行业内首家获评5A ...