DeepSeek
Search documents
DeepSeek-R1登上Nature封面:朝着AI透明化迈出的可喜一步
3 6 Ke· 2025-09-18 02:02
开源人工智能(AI)的价值正获得更广泛的认可。 刚刚,DeepSeek-R1 论文以封面文章的形式登上了权威科学期刊 Nature,DeepSeek 创始人兼 CEO 梁文峰为该论文的通讯作者。 论文链接:https://www.nature.com/articles/s41586-025-09422-z 研究团队假设,人类定义的推理模式可能会限制模型的探索,而无限制的强化学习(RL)训练可以更好地激励大语言模型(LLM)中新推理能力的涌 现。 他们通过实验证明,LLM 的推理能力可以通过纯 RL 来提升,从而减少增强性能所需的人类输入工作量,且在数学、编程竞赛和 STEM 领域研究生水平 问题等任务上,比经传统方法训练的 LLM 表现更好。 DeepSeek-R1 推出后,得到了全球开发者的广泛好评,截至发文前,其在 GitHub 上的 star 数已经达到了 91.1k。 在一篇同期发表的观点与评论文章中,卡内基梅隆大学助理教授Daphne Ippolito和他的博士生张益铭(现为 Anthropic 的 LLM 安全和对齐研究员)评价 道: "DeepSeek-R1 已从一个强大但不透明的解决方案寻找者 ...
DeepSeek登上Nature封面,梁文锋带队回应质疑,R1训练真29.4万美金
3 6 Ke· 2025-09-18 01:32
刚刚,DeepSeek-R1登上了Nature封面! 今年1月,DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning论文发布,如今成功登上全球顶刊封面。 通讯作者梁文锋带队,用RL为大模型推理能力开辟了全新路径。 论文地址:https://www.nature.com/articles/s41586-025-09422-z 值得一的是,补充材料首次公开了R1训练成本——294000美元,数字低到惊人。 即便是加上约600万美元的基础模型成本,也远低于OpenAI、谷歌训练AI的成本。 在封面推荐中,Nature毫不吝啬地赞扬了DeepSeek-R1的成就。 开源之后,R1在Hugging Face成为最受欢迎的模型,下载量破1090万次。关键是,它是全球首个经过同行评审的主流大模型。 | Training Costs | DeepSeek-R1-Zero | SFT data creation | DeepSeek-R1 | Total | | --- | --- | --- | --- | --- ...
中国大模型首登Nature封面!DeepSeek首次披露:R1训练只花了200万
量子位· 2025-09-18 00:51
Core Insights - DeepSeek has become the first Chinese large model company to be featured on the cover of Nature, with founder Liang Wenfeng as the corresponding author [2][3] - The R1 model has been recognized for its innovative approach, achieving significant performance improvements in reasoning tasks through a pure reinforcement learning framework [19][20] Group 1: Achievements and Recognition - DeepSeek's R1 model is the first large language model to undergo peer review, marking a significant milestone in the field [5] - The model has garnered 3,596 citations on Google Scholar and has been downloaded 10.9 million times from Hugging Face, indicating its widespread acceptance and use [7] - The training cost of R1 is approximately $294,000, significantly lower than competitors that often exceed $10 million, challenging the notion that high investment is necessary for top-tier AI models [12][13] Group 2: Training and Data - R1 was trained using 512 H800 GPUs for 198 hours, with a total training cost of $294,000 [10][11] - The dataset for R1 includes five types of data: Math, Code, STEM, Logic, and General, with a total of 126,000 prompts [15][18] - The model's training involved a combination of cold-start data, reinforcement learning, and supervised fine-tuning, enhancing its reasoning capabilities [25][26] Group 3: Performance Metrics - DeepSeek-R1-Zero achieved a pass@1 score of 71.0% in AIME 2024, significantly improving from 15.6% [21] - In comparison to other leading models, DeepSeek-R1 demonstrated competitive performance across various benchmarks, including MATH-500 and LiveCode [23][30] - The distilled models from DeepSeek-R1 outperformed direct applications of reinforcement learning on the base model, showcasing the effectiveness of the training approach [29] Group 4: Safety and Transparency - DeepSeek has released a detailed safety assessment of the R1 model, indicating a moderate inherent safety level comparable to GPT-4o [18][22] - The company has embraced transparency by open-sourcing the model weights for DeepSeek-R1 and DeepSeek-R1-Zero on Hugging Face, promoting community engagement [30]
梁文锋论文登上《自然》封面
财联社· 2025-09-18 00:49
Core Viewpoint - The DeepSeek-R1 inference model research paper, led by Liang Wenfeng, has been published in the prestigious journal Nature, marking a significant milestone in the field of large language models [1][4]. Group 1 - The latest paper provides more detailed insights into the model training process compared to the initial version released in January [4]. - DeepSeek-R1 is recognized as the first mainstream large language model to undergo peer review, addressing previous concerns regarding its distillation [4]. - Nature highlighted that most mainstream large models have not yet been independently peer-reviewed, and DeepSeek has filled this gap [4].
DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
3 6 Ke· 2025-09-18 00:45
太令人意外! 却又实至名归! 最新一期的 Nature 封面,竟然是 DeepSeek-R1 的研究。 也就是今年 1 月份 DeepSeek 在 arxiv 公布的论文《DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning》。这篇Nature论文 通讯作者正是梁文锋。 论文链接: https://www.nature.com/articles/s41586-025-09422-z 在封面的推荐介绍中,Nature 写到: 如果训练出的大模型能够规划解决问题所需的步骤,那么它们往往能够更好地解决问题。这种『推理』与人类处理更复杂问题的方式类似,但 这对人工智能有极大挑战,需要人工干预来添加标签和注释。在本周的期刊中,DeepSeek 的研究人员揭示了他们如何能够在极少的人工输入 下训练一个模型,并使其进行推理。 DeepSeek-R1 模型采用强化学习进行训练。在这种学习中,模型正确解答数学问题时会获得高分奖励,答错则会受到惩罚。结果,它学会了推 理——逐步解决问题并揭示这些步骤——更有可能得出正确 ...
梁文锋论文登上《自然》封面
Mei Ri Jing Ji Xin Wen· 2025-09-18 00:42
(文章来源:每日经济新闻) 与今年1月发布的DeepSeek-R1的初版论文相比,本次论文披露了更多模型训练的细节,并正面回应了 模型发布之初的蒸馏质疑。DeepSeek-R1也是全球首个经过同行评审的主流大语言模型。Nature评价 道:目前几乎所有主流的大模型都还没有经过独立同行评审,这一空白"终于被DeepSeek打破"。 由DeepSeek团队共同完成、梁文锋担任通讯作者的DeepSeek-R1推理模型研究论文,登上了国际权威期 刊《自然(Nature)》第645期的封面。 ...
8点1氪:西贝回应“公筷喂狗”事件;美联储宣布降息25个基点;DeepSeek梁文锋论文登上《自然》封面
36氪· 2025-09-18 00:19
Group 1 - The incident at Xibei restaurant involved customers using restaurant utensils to feed a pet dog, raising concerns about dining safety [4] - The restaurant confirmed that all utensils used by the customers were discarded and a thorough disinfection of the premises was conducted [4] - Local authorities stated there are currently no legal grounds to penalize the restaurant for allowing pets, as the customer's actions were deemed personal behavior [4] Group 2 - The Federal Reserve announced a 25 basis point cut in the federal funds rate, marking its first rate decrease since December 2024 [4] Group 3 - NIO Group successfully completed a financing round of $1.16 billion, aimed at enhancing its technological capabilities and expanding charging infrastructure [20] - AI chip startup Groq raised $750 million in a new funding round, achieving a post-money valuation of $6.9 billion [20] - "Qingyun New Materials" announced the completion of a multi-hundred million C round financing to support the development of advanced materials [20] Group 4 - The month of September saw a significant increase in lemon prices, doubling from 7.83 yuan per kilogram to 15 yuan per kilogram over the past year, leading to supply shortages at some stores [15] - The mooncake industry in China is transitioning from seasonal demand to year-round consumption, with over 20,000 related enterprises currently registered [24]
刚刚,梁文锋发Nature了
3 6 Ke· 2025-09-17 23:43
昨晚,DeepSeek再度开创历史! 智东西9月18日报道,9月17日,由DeepSeek团队共同完成、梁文锋担任通讯作者的DeepSeek-R1推理模型研究论文,登上了国际权威期刊《自 然(Nature)》的封面。 DeepSeek-R1论文首次公开了仅靠强化学习,就能激发大模型推理能力的重要研究成果,启发全球AI研究者;这一模型还成为全球最受欢迎的 开源推理模型,Hugging Face下载量超1090万次。此番获得《自然》的认证,可谓是实至名归。 与此同时,DeepSeek-R1也是全球首个经过同行评审的主流大语言模型。《自然》在社论中高度评价道:几乎所有主流的大模型都还没有经过 独立同行评审,这一空白"终于被DeepSeek打破"。 《自然》认为,在AI行业中,未经证实的说法和炒作已经"司空见惯",而DeepSeek所做的一切,都是"迈向透明度和可重复性的可喜一步"。 《自然》杂志封面标题:自助——强化学习教会大模型自我改进 发表在《自然》杂志的新版DeepSeek-R1论文,与今年1月未经同行评审的初版有较大差异,披露了更多模型训练的细节,并正面回应了模型 发布之初的蒸馏质疑。 | https:// ...
刚刚!DeepSeek梁文锋论文登上《Nature》封面了!
是说芯语· 2025-09-17 23:35
Core Viewpoint - The DeepSeek-R1 inference model research paper, led by Liang Wenfeng, has been published in the prestigious journal Nature, marking a significant milestone in the field of AI and large language models [1][3]. Group 1: Model Development and Validation - The latest paper provides more detailed insights into the training of the DeepSeek-R1 model compared to its initial version released in January [3]. - DeepSeek-R1 is recognized as the first mainstream large language model to undergo peer review, addressing previous concerns regarding its distillation process [3]. - The peer review process is seen as a necessary step to mitigate the risks associated with unverified claims in the AI industry, as highlighted by Nature [5]. Group 2: Data and Safety Assessment - DeepSeek-V3 Base, the foundational model for DeepSeek-R1, utilized data sourced entirely from the internet, which may include outputs generated by GPT-4, though this was not intentional [5]. - The company has provided a detailed process in supplementary materials to demonstrate how data contamination was minimized during training, ensuring that benchmark tests were not deliberately included to enhance model performance [5]. - A comprehensive safety assessment of DeepSeek-R1 has been conducted, showing that its safety features are superior to those of contemporaneous models [5].
DeepSeek梁文锋论文登上《自然》封面
第一财经· 2025-09-17 23:23
2025.09. 18 本文字数:307,阅读时长大约1分钟 作者 | 一财科技 由DeepSeek团队共同完成、梁文锋担任通讯作者的DeepSeek-R1推理模型研究论文,登上了国际权威期刊《自然(Nature)》的封面。 推荐阅读 "嘎子谢孟伟"公开道歉!警方已介入 47.7 与今年1月发布的DeepSeek-R1的初版论文相比,本次论文披露了更多模型训练的细节,并正面回应了模型发布之初的蒸馏质疑。 DeepSeek-R1也是全球首个经过同行评审的主流大语言模型。Nature评价道:目前几乎所有主流的大模型都还没有经过独立同行评审,这一空白"终 于被DeepSeek打破"。 微信编辑 | 七三 第一财经持续追踪财经热点。若您掌握公司动态、行业趋势、金融事件等有价值的线索,欢迎提供。 专用邮箱: bianjibu@yicai.com (注:我们会对线索进行核实。您的隐私将严格保密。) ...