大语言模型(LLM)

Search documents
苹果谷歌“闹分手”?iPhone搜索或转投AI,高管揭秘
3 6 Ke· 2025-05-08 23:59
此案核心争议是两家公司价值约200亿美元(约合人民币1447亿元)/年的协议,该协议让谷歌搜索成为苹果浏览器默认搜索引擎。此案可能迫 使科技巨头解除合作,颠覆iPhone等设备长期以来的运作方式。 01.Safari搜索量首次下滑,AI抢夺传统搜索引擎"蛋糕" 自2007年初代iPhone发布以来,苹果用户始终通过谷歌进行网页搜索,而如今消费者将进入由多家公司AI主导的新时代。 苹果和谷歌要"分手"? 智东西5月8日消息,据知名苹果爆料人、彭博社记者马克·古尔曼(Mark Gurman)最新报道,苹果公司正在"积极考虑"彻底改造其设备上的 Safari网络浏览器,将重点转向AI驱动的搜索引擎。 苹果与谷歌持续二十年战略合作关系似乎出现"裂痕",重大行业变革被按下"加速键"。 本周三,苹果互联网软件和服务部门高级副总裁埃迪·库(Eddy Cue)在美国司法部起诉谷歌母公司Alphabet的案件中作证时披露了这一信息。 埃迪·库提到,Safari搜索量上月首次下滑。他认为这是因为AI工具吸引了部分用户的视线,包括OpenAI、Perplexity AI和Anthropic在内的AI搜 索提供商终将取代Alphab ...
GPT-4o医学知识覆盖率仅55%?腾讯优图团队发布大模型医疗能力“体检报告”
量子位· 2025-04-30 04:10
医疗大模型知识覆盖度首次被精准量化! 在医疗领域,大语言模型(LLM)的潜力令人振奋,但其知识储备是否足够可靠?腾讯优图实验室天衍研究中心的最新研究给出了答案。 他们提出的 MedKGEval框架 ,首次通过医疗知识图谱(KG)的多层级评估,系统揭示了GPT-4o等主流模型的医学知识覆盖度。 该研究已被WWW 2025会议Web4Good Track录用为口头报告(oral)。目前,WWW 2025正在悉尼举行,会议时间从4月28日持续至5月2 日。 MedKGEval团队 投稿 量子位 | 公众号 QbitAI 背景 大语言模型(LLM)在医疗领域的快速发展凸显了其知识存储与处理的潜力,但其临床部署前的可靠性验证亟需更系统化的评估框架。 当前主流的Prompt-CBLUE、Medbench和MedJourney等评估体系虽通过医学问答基准测试LLM的任务执行能力,却存在三个明显的局限: 1)其长尾数据分布导致罕见病症覆盖不足,评测结果存在偏差; 2)任务导向的设计聚焦疾病预测、用药咨询等单一场景,难以量化模型内在医学知识储量; 3)传统问答形式局限于表面对错判断,无法捕捉医学概念间的复杂拓扑关联。 为解决这 ...
评论 || 舱驾一体化下的几点思考
Zhong Guo Qi Che Bao Wang· 2025-04-27 05:45
Core Insights - The integration of "cockpit and driving" is a hot topic in the automotive industry, reflecting a shift from a driver-centric model to a user experience-centered intelligent model [2] - Achieving seamless collaboration between driving and cockpit functions is a critical challenge for automakers [2] Group 1: Industry Trends - The traditional automotive control systems face issues such as clear functional module segregation and difficulties in cross-domain collaboration, leading to a disjointed user experience [2] - The introduction of AI technologies, particularly large language models (LLMs), is gradually improving the situation by enabling better coordination between driving and cockpit domains [2][3] Group 2: Engineering Challenges - "Cockpit and driving" integration requires systematic reconstruction and deep innovation of underlying architecture, data fusion, user interaction logic, and safety mechanisms [3] - The central intelligent brain must possess strong spatial understanding capabilities to analyze multi-dimensional data and make real-time decisions while ensuring user experience and driving safety [3] Group 3: Commercialization Issues - The automotive industry faces significant challenges in achieving true "cockpit and driving" integration, with many companies over-marketing the concept and neglecting the complexities and technological maturity required for practical use [4] - Many so-called "cockpit and driving" functions are still in the technical validation or initial application stages, failing to meet the requirements for seamless collaboration and safety [4] Group 4: User-Centric Focus - The ultimate goal of "cockpit and driving" integration should be to create real value for users, moving from functional stacking to experiential integration to enhance user satisfaction and travel safety [4]
具身智能 “成长”的三大烦恼
2 1 Shi Ji Jing Ji Bao Dao· 2025-04-24 13:07
Group 1: Industry Overview - The humanoid robot industry has made rapid progress this year, with significant public interest sparked by events such as the Spring Festival Gala and the first humanoid robot half marathon [1] - Key technologies driving advancements in humanoid robots include large language models (LLM), visual language models (VLM), and visual language action end-to-end models (VLA), which enhance interaction perception and generalization capabilities [1][3] - Despite advancements, challenges remain in data collection, robot morphology applications, and the integration of large and small brain systems [1][3] Group 2: Data Challenges - The industry faces a bottleneck in data scarcity, particularly in acquiring 3D data necessary for training robots to perform tasks in physical environments [3][4] - Traditional data collection methods are costly and time-consuming, with companies like Zhiyuan Robotics employing extensive human resources for data gathering [4] - The introduction of 3D generative AI for Sim2Real simulation is seen as a potential solution to meet the high demand for generalizable data in embodied intelligence [4] Group 3: Technological Evolution - The evolution of robots has progressed through three stages: industrial automation, large models, and end-to-end large models, each serving different application needs [6] - End-to-end models integrate multimodal inputs and outputs, improving decision-making efficiency and enhancing humanoid robot capabilities [6][7] - Experts emphasize that humanoid robots are not synonymous with embodied intelligence, but they represent significant demand and challenges for the technology [7] Group 4: Brain Integration Solutions - The integration of large and small brain systems is a focus area, with companies like Intel and Dongtu Technology proposing solutions to reduce costs and improve software development efficiency [9][10] - Challenges in achieving brain integration include ensuring real-time performance and managing dynamic computational loads during robot operation [10][11] - The market is pushing for a convergence of technologies, requiring robots to perform tasks in various scenarios while maintaining flexibility and intelligent interaction capabilities [12]
我悟了如何与AI说话!谷歌 69 页官方提示词秘籍全解析,中文版免费下载
AI科技大本营· 2025-04-22 10:26
(You don't need to be a data scientist or a machine learning engineer – everyone can write a prompt.) 作者 | 王启隆 出品 | CSDN(ID:CSDNnews) 最近,Google 官方发布了一份长达 69 页的 【Prompt Engineering 白皮书】 ,可以说是目前最系统、最权威的"AI 沟通指南"了。我们也是第一时 间翻译好了这本书,准备 【免费】 送给大家! 怎么拿?很简单, 看完这篇文章,参与文末的小活动就行! 现在咱们聊聊,为啥这份白皮书突然就刷屏了?为啥说它是"必学秘籍"? 你不必是数据科学家或机器学习工程师——人人都可以编写提示词。 你苦口婆心解释半天,它抓着一个无关紧要的词就开始自由发挥…… 你想要个 A,它自信满满地给你个 B,还附赠一套又臭又长、看似完美的错误逻辑…… 同一个问题,昨天它懂你,今天它就装傻,效果全看"缘分"…… Google 这份白皮书,不是某个博主的心得体会,不是零散的技巧合集,而是 Google 官方基于对大语言模型(LLM)的深刻理解,系统性梳理出来的 ...
一堂「强化学习」大师课 | 42章经
42章经· 2025-04-13 12:02
吴翼: RL 是机器学习这个大概念下一类比较特殊的问题。 曲凯: 今天我们请来了国内强化学习 (RL) 领域的专家吴翼,吴翼目前是清华大学交叉信息研究院 助理教授,他曾经在 OpenAI 工作过,算是国内最早研究强化学习的人之一,我们今天就争取一 起把 RL 这个话题给大家聊透。 首先吴翼能不能简单解释一下,到底什么是 RL? 传统机器学习的本质是记住大量标注过正确答案的数据对。 举个例子,如果你想让机器学习能分辨一张图片是猫还是狗,就要先收集 10000 张猫的照片和 10000 张狗的照片,并且给每一张都做好标注,让模型背下来。 上一波人工智能四小龙的浪潮其实都以这套框架为基础,主要应用就是人脸识别、指纹识别、图 像识别等分类问题。 这类问题有两个特点,一是单一步骤,比如只要完成图片分辨就结束了;二是有明确的标准答 案。 但 RL 很不一样。 RL 最早是用来打游戏的,而游戏的特点和分类问题有两大区别。 第一,游戏过程中有非常多的动作和决策。比如我们玩一个打乒乓球的游戏,发球、接球、回 球,每一个动作都是非标的,而且不同的选择会直接影响最终的结果。 第二,赢得一场游戏的方式可能有上万种,并没有唯一的标准答 ...
一堂「强化学习」大师课 | 42章经
42章经· 2025-04-13 12:01AI Processing
曲凯: 今天我们请来了国内强化学习 (RL) 领域的专家吴翼,吴翼目前是清华大学交叉信息研究院助理教 授,他曾经在 OpenAI 工作过,算是国内最早研究强化学习的人之一,我们今天就争取一起把 RL 这个话题 给大家聊透。 举个例子,如果你想让机器学习能分辨一张图片是猫还是狗,就要先收集 10000 张猫的照片和 10000 张狗 的照片,并且给每一张都做好标注,让模型背下来。 首先吴翼能不能简单解释一下,到底什么是 RL? 上一波人工智能四小龙的浪潮其实都以这套框架为基础,主要应用就是人脸识别、指纹识别、图像识别等 分类问题。 吴翼: RL 是机器学习这个大概念下一类比较特殊的问题。 传统机器学习的本质是记住大量标注过正确答案的数据对。 所以我觉得人生有一个很好玩的地方是,你需要花很多时间先探索自己的奖励函数是什么,很多人可能努 力了很长时间,最后却发现找错了奖励函数。 这类问题有两个特点,一是单一步骤,比如只要完成图片分辨就结束了;二是有明确的标准答案。 但 RL 很不一样。 RL 最早是用来打游戏的,而游戏的特点和分类问题有两大区别。 第一,游戏过程中有非常多的动作和决策。比如我们玩一个打乒乓球的游戏, ...
一堂「强化学习」大师课 | 42章经
42章经· 2025-04-13 12:01
曲凯: 今天我们请来了国内强化学习 (RL) 领域的专家吴翼,吴翼目前是清华大学交叉信息研究院助理教授,他曾经在 OpenAI 工作过,算是国内最早研究强化学 习的人之一,我们今天就争取一起把 RL 这个话题给大家聊透。 首先吴翼能不能简单解释一下,到底什么是 RL? 因此,RL 其实更通用一些,它的逻辑和我们在真实生活中解决问题的逻辑非常接近。比如我要去美国出差,只要最后能顺利往返,中间怎么去机场、选什么航 司、具体坐哪个航班都是开放的。 但 RL 很不一样。 RL 最早是用来打游戏的,而游戏的特点和分类问题有两大区别。 第一,游戏过程中有非常多的动作和决策。比如我们玩一个打乒乓球的游戏,发球、接球、回球,每一个动作都是非标的,而且不同的选择会直接影响最终的结 果。 第二,赢得一场游戏的方式可能有上万种,并没有唯一的标准答案。 所以 RL 是一套用于解决多步决策问题的算法框架。它要解决的问题没有标准答案,每一步的具体决策也不受约束,但当完成所有决策后,会有一个反馈机制来评 判它最终做得好还是不好。 吴翼: RL 是机器学习这个大概念下一类比较特殊的问题。 传统机器学习的本质是记住大量标注过正确答案的数据对。 ...
杨立昆“砸场”英伟达:不太认同黄仁勋,目前大模型的推理方式根本是错的,token 不是表示物理世界的正确方式|GTC 2025
AI科技大本营· 2025-03-21 06:35
责编 | 王启隆 出品丨AI 科技大本营(ID:rgznai100) 黄教主的演讲 感觉才没过几天,今年的 GTC 英伟达大会也即将迎来尾声了。 而今年比尔·达利则是对话"AI 教父" 杨立昆 (Yann LeCun),很有前后呼应的感觉。 但 GTC 并不只有黄仁勋和杨立昆,还有许多精彩的演讲与对话,比方说: ………… 接下来的一段时间, CSDN AI 科技大本营 将会在「 GTC 2025 大师谈 」栏目持续更新这些精华内容的全文整理,尽情期待。 比尔·达利 自己就在采访杨立昆之后进行了一场 演讲 ,系统性地讲解了英伟达 2024 一整年的四大项目进展,内容干货很多; OpenAI o1 作者 诺姆·布朗 (Noam Brown)和英伟达的 AI 科学家来了一场 对话 ,他认为现在 AI 圈最需要来一场革命的,就是这些五花八 门的 基准测试 (Benchmark),而且改这个东西还不需要花太多算力资源; 2018 年诺贝尔化学奖得主 弗朗西斯·阿诺德 (Frances Arnold)围绕 AI for Sciense 还有蛋白质工程进行了一场相当硬核的 圆桌对话 ; UC 伯克利教授 彼得·阿比尔 (P ...
GenAI 的存储解决方案 第 7 部分:解决方案梳理
Counterpoint Research· 2025-03-18 09:14
Rick Cui / 客户服务总监 电话: +86 13801127537 邮箱:rick@counterpointresearch.com 媒体采访 Haylee Xu / 市场专员 电话: +86 15959754429 邮箱:haylee.xu@counterpointresearch.com 对于 GenAI 的解决方案而言,诸如带宽和容量之类的优势固然重要,但功耗、占用面积和价格等成 本因素也需要加以考量。由于存储器是一种依赖于中央处理器(CPU)的被动组件,其配置会根据 处理器而做出改变。在这方面, ARM 近期的战略调整以及基于 MoE 的大语言模型(LLM)可能出 现的变化,都可能会导致未来架构和解决方案发生改变。 数据来源:Source: Counterpoint Research 点击阅读原文下载完整版 PDF 报告 业务咨询 ...