航空燃料
Search documents
中石化中航油官宣重组,抢占绿色航空战略高地
Zhong Guo Neng Yuan Wang· 2026-01-09 02:12
1月8日,经国务院批准,中国石油化工集团有限公司(下称中国石化(600028))与中国航空油料集团 有限公司(下称中航油)实施重组。 业内人士认为,这并非简单的企业合并,而是全球第一大炼油公司与亚洲最大航油服务商的一次历史性 握手。两者的结合,将直接贯通从原油炼化到机场加注的航空燃料全产业链,在保障国家能源安全动脉 的同时,锁定航空业绿色转型的未来钥匙。 强强联手优势互补 中国石化与中航油,就像产业链上的"超级生产者"与"核心主动脉"。中国石化作为全球炼油产能的领跑 者,也是国内航煤生产的头号供应商,2023年其航煤产量超过2600万吨。而中航油则是国内航空油料采 购、储运、加注的绝对主导者,业务覆盖全国各大机场,是连接炼厂与飞机的桥梁。 但长期以来,我国航空燃料产业面临着"生产归生产、销售归销售"的格局,与国际大型一体化能源公司 相比,整体竞争力有待提升。此外,国资委也一直要求央企聚焦主责主业,实现业务资源整合协同。 中国石化与航油集团的整合,正是这一政策导向的具体体现。过去,这两大巨头是紧密的上下游客户关 系。此次重组最直接的驱动力,在于打造一条更坚固、更高效的航空燃料供应链。重组后,中国石化可 借助中国 ...
中国石化与中国航油实施重组,助力航空业绿色低碳转型
Bei Jing Ri Bao Ke Hu Duan· 2026-01-09 01:32
航空业二氧化碳排放是交通领域减排最困难的领域,可持续航空燃料技术是公认的主要减排路线。 中国石化与中国航油实施重组,有利于航空燃料科技创新体系建设,加速产业链创新链融合发展。 目前,我国航空燃料产业的研发端、生产端与销售端、应用端分离,在航空燃料迭代升级方面,存在一 定程度的科技与产业脱节。 重组后,可以发挥中国石化的成油品研发技术优势和中国航油的市场供给端先导优势,有效促进我国航 空燃料产业链创新链融合,在加速航油产品提质升级的同时,还可以促进氢能在航空能源领域的研发应 用,为航空燃料产业多元化发展提供了想象空间。 助力航空业绿色低碳转型 中国石化与中国航油实施重组,有利于推动可持续航空燃料产业高质量发展,助力航空业绿色低碳转 型。 转自:北京日报客户端 记者昨天(8日)从国务院国资委获悉,经国务院批准,中国石油化工集团有限公司与中国航空油料集 团有限公司实施重组。中国石化是全球第一大炼油公司和我国第一大航油生产商,中国航油是亚洲最大 的集航空油品采购、运输、储存、检测、销售、加注于一体的航空运输服务保障企业。两家企业重组 后,可发挥航空煤油产业链一体化优势,降低供应成本,加快推动航空能源供应绿色低碳转型, ...
四大证券报精华摘要:1月9日
Zhong Guo Jin Rong Xin Xi Wang· 2026-01-09 00:50
登录新浪财经APP 搜索【信披】查看更多考评等级 据1月8日国务院国资委官网消息,经报国务院批准,中国石油化工集团有限公司与中国航空油料集团有 限公司实施重组。本次"强强联合",有望助力降低航空燃料供应成本,增强我国航空燃料产业竞争力, 促进航空业绿色低碳转型。 "中国石化集团与中国航油集团的重组符合近年来国企改革聚焦主责主业、通过整合提升核心竞争力的 整体方向,其目的在于优化国有资本布局,避免同质化竞争。"中国企业改革与发展研究会研究员周丽 莎表示,处于航空燃料产业链下游关键环节的中国航油集团,拥有覆盖全国运输机场及航空客户的销售 网络,这确保了其航油产品的稳定销售。通过重组实现"炼油—分销"一体化,有助于增强我国航油供应 链的稳定性与议价能力。 据初步梳理,2026年1月1日至1月8日,已有聚辰股份、鹏辉能源、正泰电器、德赛西威、兴业银锡、华 盛锂电等6家A股公司发布了筹划H股上市公告;景旺电子、益方生物、亿纬锂能、天下秀等4家A股公 司已向港交所递交招股书;先导智能申请发行H股并在港交所主板挂牌上市获得证监会备案。此外,道 通科技于1月2日在港交所发布公告,新增海通国际证券为公司委任的整体协调人,澜起科 ...
中国石化中航油官宣重组,抢占绿色航空战略高地
中国能源报· 2026-01-08 14:38
中国石油化工集团有限公司与中国航空油料集团有限公司实施重组,是全球第一大炼油公司与亚洲最大航油服务商的一次历史性握 手。 1月8日,经国务院批准,中国石油化工集团有限公司(以下简称"中国石化")与中国航空油料集团有限公司(以下简称"中航油")实 施重组。 业内人士认为,这并非简单的企业合并,而是全球第一大炼油公司与亚洲最大航油服务商的一次历史性握手。两者的结合,将直接贯通 从原油炼化到机场加注的航空燃料全产业链,在保障国家能源安全动脉的同时,锁定航空业绿色转型的未来钥匙。 强强联手优势互补 中国石化与中航油,就像产业链上的"超级生产者"与"核心主动脉"。中国石化作为全球炼油产能的领跑者,也是国内航煤生产的头号供 应商,202 3年其航煤产量超过2600万吨。而中航油则是国内航空油料采购、储运、加注的绝对主导者,业务覆盖全国各大机场,是连 接炼厂与飞机的桥梁。 但长期以来,我国航空燃料产业面临着"生产归生产、销售归销售"的格局,与国际大型一体化能源公司相比,整体竞争力有待提升。此 外,国资委也一直要求央企聚焦主责主业,实现业务资源整合协同。 中国石化与中航油的整合,正是这一政策导向的具体体现。过去,这两大巨头是 ...
获批!中航大可持续航空燃料技术研究平台项目→
Zhong Guo Min Hang Wang· 2026-01-04 14:56
2025年12月31日 中国民航大学 可持续航空燃料技术研究平台项目 初步设计及概算 获得中国民用航空局正式批复 项目总概算核定为43467万元 建筑总面积25700平方米 地上建筑面积21213平方米 地下建筑面积4487平方米 该项目聚焦我国可持续航空燃料(SAF)标准体系和政策体系建设核心需求,将搭建与世界领先水平同步的科研实验平台,重点建设基于发动机系统安全 的安全性评估实验设施及面向全生命周期的可持续认证技术研究系统,既填补我国当前适航审定设施的空白,也为自主适航审定与可持续认证体系搭建提 供坚实保障,助力民航脱碳能力提升,可为国际民航标准制定提供相关支撑。 ...
10万→8610万吨,中国可持续航空燃料(SAF)的"长征"才刚开始
DT新材料· 2025-12-30 16:03
从2022年建成的10万吨/年工业装置,到2050年预测的8610万吨年需求,中国SAF产业的"长征"才刚刚开始。 2024年,全球航空煤油消费基本恢复至疫情前的3.3亿吨水平,中国民航航班约450万架次,航煤消费量近4000万吨,由此产生的二氧化碳排放达1.26亿 吨。 与汽油、柴油需求逐年下降不同,航煤需求仍在持续增长——预计到2040-2045年,中国航煤需求将达7600万吨以上。 以下文章来源于生物基科技 ,作者生物基能源与材料 生物基科技 . 生物基科技为DT新材料旗下以分享人物观点、推动全球生物基科学与技术的创新进程为核心的创新平台。 然而,增长的需求遭遇了严苛的减排要求。 SAF的使用可减少65%-85%的 CO 2 排放,无需改变现有航空设施,是航空业碳减排的最可行路径 。 国际民航组织(ICAO)于2016年通过的国际航空碳抵消和减排机制(CORSIA),为全球航空业设定了统一的碳减排目标: 碳排放量在 2021-2035年 保持零增长,并提出在2050年实现碳中和的目标 。 CORSIA将在2027年强制实施,航空业减碳发展迫在眉睫 。 在这个背景下,11月29日,在第五届非粮生物质高值化 ...
可持续航空燃料产量增速将放缓
Zhong Guo Hua Gong Bao· 2025-12-15 03:05
中化新网讯12月9日,国际航空运输协会(IATA)发布可持续航空燃料(SAF)产量预估数据。数据显示, 2025年SAF产量预计达190万吨,较2024年的100万吨实现翻倍,但2026年产量增速将显著放缓,将仅增 至240万吨。市场占比方面,2025年、2026年SAF占航空燃油总消耗量分别仅为0.6%、0.8%,占比极 低。 这主要归因于成本压力。当前SAF价格为传统航油的2倍,强制使用地区则高达5倍,且在2025年航空业 使用SAF需额外承担36亿美元成本。另外值得注意的是,190万吨产量较IATA此前的预测数据有所下 调,主要因政策支持不足导致产能未充分释放。 ...
预判明年SAF产量增长放缓 国际航协呼吁须在e-SAF强制要求出台前调整方向
Zheng Quan Shi Bao Wang· 2025-12-09 14:23
Core Insights - Sustainable Aviation Fuel (SAF) is positioned as a key solution for reducing carbon emissions in the aviation sector, driven by both policy and market forces amid increasing pressure for carbon reduction [1][2] - The International Air Transport Association (IATA) forecasts that SAF production will reach 1.9 million tons (2.4 billion liters) by 2025, nearly doubling from 1 million tons in 2024, but growth may slow to 2.4 million tons in 2026 [1] - Despite the expected increase, SAF will only account for 0.6% of total aviation fuel consumption in 2025, with an additional fuel cost of $3.6 billion due to SAF price premiums [1][2] Industry Challenges - The price of SAF is currently twice that of fossil fuel aviation fuel, and in some mandated markets, it can be up to five times higher, which is a significant barrier to adoption [1] - The fragmented policy framework in Europe is hindering market growth and investment in SAF production, necessitating urgent corrective measures from regulatory bodies [2][3] - Many airlines are reassessing their SAF usage targets, as current production levels are insufficient to meet previously set goals, particularly the commitment to achieve a 10% SAF usage by 2030 [3] Market Outlook - The aviation industry is recognized as one of the most challenging sectors for emissions reduction, with expectations for explosive growth in SAF demand driven by policy initiatives [3] - The supply-demand gap for SAF is projected to exceed 26 million tons between 2030 and 2035, with the market size potentially reaching hundreds of billions of yuan based on current pricing [3] - China has initiated SAF verification flights, with state-owned airlines beginning to incorporate SAF into their operations, while Europe remains the most proactive in SAF deployment [3]
全球SAF产业迎来技术革命
Zhong Guo Hua Gong Bao· 2025-12-03 03:33
Core Insights - The sustainable aviation fuel (SAF) industry is on the brink of explosive growth driven by the deep integration of artificial intelligence, new materials, and digital technologies [1] - SAF is transitioning from concept to reality, moving from demonstration to large-scale commercialization, providing robust technical support for the green transformation of the global aviation industry [1] Group 1: Technological Innovations - AI-driven molecular design and revolutionary power-to-liquid technologies are reshaping the production pathways and efficiency boundaries of SAF [1] - A generative AI model developed by Stanford University can autonomously design new molecular structures with specific combustion characteristics, generating over 50,000 candidate molecules and identifying 128 promising SAF components [2] - ExxonMobil and MIT's digital twin platform simulates the entire production process, optimizing reaction conditions and improving product yield by 18% [2] - Shell's automated robotic lab in Amsterdam can conduct experiments that would traditionally take months in just one week, integrating machine learning for real-time data analysis [2] Group 2: Efficiency and Cost Reduction - The latest report from the International Energy Agency indicates that AI-assisted SAF projects have reduced R&D cycles by 80% and development costs by 60% [3] - Innovations in catalyst and reactor technologies are driving SAF production towards higher efficiency and lower costs, with a new metal-organic framework catalyst achieving a carbon monoxide conversion rate of 92% [4] - A third-generation microchannel reactor developed by BASF and Munich University has improved heat transfer efficiency by tenfold and production efficiency by fivefold [4] - Cambridge University's low-temperature plasma catalytic system operates at 200°C, achieving conversion efficiencies that traditionally require 350°C, reducing energy consumption by 30% [4] Group 3: Smart Production Facilities - SAF production facilities are evolving towards high levels of intelligence, with TotalEnergies' smart factory in Le Havre utilizing over 20,000 sensors to predict equipment anomalies and reduce unplanned downtime by 85% [5] - Siemens' AI predictive maintenance system for Nordic Renewable Fuels can forecast mechanical failures seven days in advance, lowering maintenance costs by 32% and increasing equipment utilization to 99.2% [6] - BP's Rotterdam SAF plant employs advanced smart grid technology to enhance the direct use of renewable energy to 65% and improve overall energy efficiency by 15% [6] - Modular SAF units developed by Rhein Group can switch production processes within 72 hours based on raw material supply and market demand, with operational costs 25% to 30% lower than traditional plants [6]
2025年10月中国可持续航空燃料行业新图景:电气SAF篇
RMI· 2025-11-17 12:19
Investment Rating - The report does not explicitly provide an investment rating for the sustainable aviation fuel (SAF) industry, but it emphasizes the potential for significant growth and development in the electric SAF sector, particularly in China [4][5]. Core Insights - The aviation industry faces increasing pressure to reduce carbon emissions, with the International Civil Aviation Organization (ICAO) targeting net-zero emissions by 2050. Sustainable aviation fuel (SAF) is identified as a key solution to achieve this goal [4][7]. - Electric SAF, produced from renewable electricity, water, and captured CO2, is seen as a necessary complement to biomass SAF due to its higher reduction potential and theoretical production capacity [4][9]. - The report highlights that while electric SAF has a promising future, it currently faces high production costs, limiting its commercial viability in the short term [12][39]. - China is positioned to play a significant role in the global electric SAF market due to its advanced renewable energy capabilities and potential for cost-effective production [5][20]. Summary by Sections 1. Research Background and Overview of SAF Development - The aviation sector's carbon emissions have been growing rapidly, necessitating urgent action for reduction. SAF is viewed as the most effective means for the aviation industry's green transition [4][7]. - Electric SAF is distinguished from biomass SAF by its raw materials and production processes, offering greater sustainability and long-term scalability [33]. 2. Global Development Status of Electric SAF - The global SAF market is experiencing rapid growth, with production expected to reach 1.25 billion liters (approximately 1 million tons) in 2024, doubling from 2023 [11]. - Over 40 airlines have committed to using SAF, with projections of approximately 14 million tons of SAF usage by 2030 [11]. - Electric SAF is still in the early stages of commercialization, primarily represented by demonstration plants and small-scale projects [12]. 3. Technical Route Analysis of Electric SAF - Electric SAF technology can be categorized into three main modules: green hydrogen production, CO2 capture, and liquid fuel synthesis. The main synthesis pathways include Fischer-Tropsch synthesis (FT) and methanol-to-jet (MtJ) [44]. - The report notes that while biomass SAF currently dominates the market, electric SAF is expected to overcome existing challenges and become a major production technology by 2035 [39]. 4. Production Potential Analysis of Major Countries - The report evaluates the production potential and cost structure of electric SAF in China, the US, Germany, and Saudi Arabia, highlighting China's advantages in renewable energy and green hydrogen production [5][20]. - It emphasizes the need for clear long-term development goals and supportive policies to foster the electric SAF industry in China [5]. 5. Future Global Market Development Trends - The report predicts that by 2035, electric SAF will play a crucial role in the global SAF supply and demand landscape, with China emerging as a key player [5][20]. 6. Key Conclusions - Electric SAF has greater decarbonization potential but faces high costs until 2035, making it difficult to compete effectively with biomass SAF in the short term [5][39]. - The development of electric SAF is not only vital for the aviation industry's energy efficiency and emissions reduction but also serves as a new driver for economic growth and job creation in China [5].