自动驾驶
Search documents
地平线苏箐:曾一度看不到自动驾驶太多希望...
自动驾驶之心· 2025-12-10 00:04
以下文章来源于RoboX ,作者RoboX RoboX . 从AI汽车到机器人,我们关注最具潜力的超级智能体! 作者 | RoboX 来源 | RoboX 原文链接: 地平线苏箐演讲全文提炼:自动驾驶的曙光、痛苦与轮回 点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 >>自动驾驶前沿信息获取 → 自动驾驶之心知识星球 本文只做学术分享,如有侵权,联系删文 演讲者:苏箐 | 地平线副总裁&首席架构师 演讲时间 :2025.12.9 演讲场合 :2025地平线技术生态大会 全文提炼如下: 今年,我们确实能看到自动驾驶的技术路径是比较清晰的,但也会看到有更难的问题在前面。你知道这些问题能解掉,但应该怎么解今天还不知道。 绝大多数行业外的人,可能并不理解自动驾驶团队面临的困难和压力。这种智力和体力的双重压榨极度痛苦,因为有SOP的时间压在那儿,然后又有方法论的变化, 还有各种corner case需要去解。 在稠密的世界里连续运行的时候,所有的case都需要解决,这就是这个行业非常痛苦的地方。 曙光:重大分水岭的出现 我刚准备加入地平线的时候,和余凯博士聊过几次, ...
澳门大学首个世界模型驱动的视觉定位框架!
自动驾驶之心· 2025-12-10 00:04
点击下方 卡片 ,关注" 自动驾驶之心 "公众号 戳我-> 领取 自动驾驶近30个 方向 学习 路线 >>自动驾驶前沿信息获取 → 自动驾驶之心知识星球 论文作者 | Haicheng Liao等 编辑 | 自动驾驶之心 在自动驾驶的交互场景中,最尴尬的时刻莫过于此: 乘客指着前方复杂的路口说:"跟着那辆SUV"。自动驾驶系统看着眼前三辆长得差不多的车,内心OS:"哪辆?是左边那辆?还是正在变道那辆?" 现有的自动驾驶视觉定位(Visual Grounding)模型,大多像是一个" 只会看图说话 "的愣头青。它们盯着当前的这一帧画面,试图从 像素 里找答案。一旦指令模糊, 或者目标被遮挡,它们就很容易"指鹿为马",甚至引发错误推理。 人类司机为什么不会弄错?因为我们会" 预判 "。 当我们听到指令时,大脑里会瞬间推演未来的画面:左边那辆车马上要转弯了,不符合"跟着"的语境;只有中间那辆车在加速直行,才是最可能的意图。 "在行动之前,先思考未来"。 受此启发,来自[澳门大学]的研究团队提出了全新的框架 ThinkDeeper。这是首个将世界模型(World Model)引入自动驾驶视觉定位的研究。这项工作不仅刷 ...
世界模型自动驾驶小班课!特斯拉世界模型、视频&OCC生成速通
自动驾驶之心· 2025-12-09 19:00
Core Viewpoint - The article introduces a new course titled "World Models and Autonomous Driving Small Class," focusing on advanced algorithms in the field of autonomous driving, including general world models, video generation, and OCC generation [1][3]. Course Overview - The course is developed in collaboration with industry leaders and follows the success of a previous course on end-to-end and VLA autonomous driving [1]. - The course aims to enhance understanding and practical skills in world models, which are crucial for the advancement of autonomous driving technology [11]. Course Structure Chapter 1: Introduction to World Models - This chapter covers the relationship between world models and end-to-end autonomous driving, the history of world models, and current application cases [6]. - It discusses various types of world models, including pure simulation, simulation plus planning, and generating sensor inputs and perception results [6]. Chapter 2: Background Knowledge of World Models - The second chapter focuses on foundational knowledge related to world models, including scene representation, Transformer technology, and BEV perception [6][12]. - It highlights key technical terms frequently encountered in job interviews related to world models [7]. Chapter 3: Discussion on General World Models - This chapter addresses popular general world models and recent trends in autonomous driving jobs, including models from Li Feifei's team and DeepMind [7]. - It provides insights into the core technologies and design philosophies behind these models [7]. Chapter 4: Video Generation-Based World Models - The fourth chapter focuses on video generation algorithms, showcasing significant works such as GAIA-1 & GAIA-2 and recent advancements from various institutions [8]. - It includes practical applications using open-source projects like OpenDWM [8]. Chapter 5: OCC-Based World Models - This chapter explores OCC generation algorithms, discussing three major papers and a practical project that extends to vehicle trajectory planning [9]. Chapter 6: World Model Job Topics - The final chapter shares practical experiences from the instructor's career, addressing industry applications, pain points, and interview preparation for related positions [10]. Target Audience and Learning Outcomes - The course is designed for individuals aiming to deepen their understanding of end-to-end autonomous driving and world models [11]. - Upon completion, participants are expected to achieve a level equivalent to one year of experience as a world model autonomous driving algorithm engineer, mastering key technologies and being able to apply learned concepts in projects [14].
端到端落地小班课:核心算法&实战讲解(7个project)
自动驾驶之心· 2025-12-09 19:00
Core Insights - The article discusses the evolving recruitment landscape in the autonomous driving sector, highlighting a shift in demand from perception roles to end-to-end, VLA, and world model positions [2] - A new advanced course focused on end-to-end production in autonomous driving has been designed, emphasizing practical applications and real-world experience [2][4] Course Overview - The course is structured to cover various core algorithms, including one-stage and two-stage end-to-end methods, navigation information applications, reinforcement learning, and trajectory optimization [2] - The course aims to provide in-depth knowledge and practical skills necessary for production in autonomous driving, with a focus on real-world applications and challenges [2][4] Chapter Summaries - **Chapter 1: Overview of End-to-End Tasks** Discusses the integration of perception tasks and the learning-based design of control algorithms, which are essential skills for companies in the end-to-end era [7] - **Chapter 2: Two-Stage End-to-End Algorithm Framework** Introduces the modeling methods of two-stage frameworks and the information transfer between perception and planning, including practical examples [8] - **Chapter 3: One-Stage End-to-End Algorithm** Focuses on one-stage frameworks that allow for lossless information transfer, presenting various methods and practical learning experiences [9] - **Chapter 4: Production Application of Navigation Information** Covers the critical role of navigation information in autonomous driving, detailing mainstream navigation map formats and their integration into models [10] - **Chapter 5: Introduction to RL Algorithms in Autonomous Driving** Explains the necessity of reinforcement learning in conjunction with imitation learning to enhance the model's ability to generalize [11] - **Chapter 6: Trajectory Output Optimization** Engages participants in practical projects focusing on algorithms based on imitation learning and reinforcement learning [12] - **Chapter 7: Safety Net Solutions - Spatiotemporal Joint Planning** Discusses post-processing logic to ensure model accuracy and stability in trajectory outputs, introducing common smoothing algorithms [13] - **Chapter 8: Experience Sharing on End-to-End Production** Provides insights on practical experiences in production, addressing data, models, scenarios, and strategies for system capability enhancement [14] Target Audience - The course is aimed at advanced learners with a foundational understanding of autonomous driving algorithms, reinforcement learning, and programming skills [15][17]
拉开与特斯拉Robotaxi差距!Waymo被爆周订单超45万,未满八个月近翻倍
Hua Er Jie Jian Wen· 2025-12-09 16:46
从公开数据看,现阶段特斯拉追赶Waymo面临挑战。据特斯拉最新财报电话会议,该公司在奥斯汀的 车队行驶里程达25万英里,旧金山湾区超过100万英里。而Waymo今年7月已宣布累计完全自动驾驶里 程达1亿英里。 Waymo订单增长与其快速扩张密切相关。媒体爆料后不久,电动汽车分析师Sawyer Merritt在社交媒体 披露,Waymo的Robotaxi服务目前在全美部署了2500辆车,覆盖旧金山湾区、洛杉矶、凤凰城、奥斯汀 和亚特兰大五座城市。 媒体最近的爆料显示,谷歌"姊妹"、Alphabet旗下自动驾驶公司Waymo的Robotaxi业务单周出行付费订 单不到八个月翻了将近一倍。 据媒体报道,Waymo的投资方老虎环球基金(Tiger Global)最近宣布启动新的风投基金PIP 17,在致信 投资者介绍这只计划募资22亿美元的新基金时意外披露,Waymo的每周付费订单已突破45万次。这个 数据意味着,周订单较今年4月的25万次增长了80%。 这一增长速度使Waymo在与特斯拉的Robotaxi竞争中进一步扩大领先优势。老虎环球基金在信中写道: "Waymo是自动驾驶领域的明确领导者,其产品比人类驾驶员安 ...
文远知行-W(00800):单三季度收入同比增长144%,L4产品商业化落地加速推进:文远知行(WRD.0/0800.HK)
Guoxin Securities· 2025-12-09 14:15
Investment Rating - The report maintains an "Outperform" rating for the company [4][58]. Core Insights - The company achieved revenue of 171 million yuan in Q3 2025, representing a year-on-year growth of 144.2% and a quarter-on-quarter increase of 34.4% [1][6]. - The net profit for Q3 2025 was -307 million yuan, an improvement from -1.043 billion yuan in Q3 2024 and -406 million yuan in Q2 2025 [1][6]. - The company is a global leader in L4 autonomous driving products and solutions, with significant advancements in commercializing its L4 products [3][24]. Financial Performance - In Q3 2025, the company's gross margin was 32.9%, a year-on-year increase of 26.4 percentage points [2][14]. - The adjusted net profit margin for Q3 2025 was -161.2%, showing a significant improvement from previous quarters [2][14]. - The company’s expense ratio decreased to 254.9% in Q3 2025, down 1024.4 percentage points year-on-year [2][19]. Business Segments - Product revenue in Q3 2025 was 79.2 million yuan, a remarkable year-on-year growth of 428.0%, driven by increased sales of Robotaxi and Robobus [1][7]. - Service revenue for the same period was 91.8 million yuan, up 66.9% year-on-year, primarily due to growth in smart data services and autonomous driving-related operational support [1][7]. Market Expansion and Partnerships - The company has accelerated the commercialization of its L4 products, obtaining autonomous driving licenses in multiple countries, including Switzerland, China, UAE, Saudi Arabia, Singapore, France, Belgium, and the USA [3][25]. - In November 2025, the company launched L4 Robotaxi commercial operations in Abu Dhabi in partnership with Uber, marking a significant milestone in the Middle East [32]. - The company has also expanded its Robobus services to various cities, including operations in UAE and Belgium [43][44]. Future Projections - The report has adjusted revenue forecasts for 2025-2027 to 5.51 billion yuan, 10.00 billion yuan, and 18.66 billion yuan, respectively, reflecting a downward revision due to domestic L4 policy openings [58]. - The projected net losses for the same period are -14.16 billion yuan, -13.10 billion yuan, and -10.18 billion yuan [58].
文远知行-W(00800):单三季度收入同比增长144%,L4产品商业化落地加速推进
Guoxin Securities· 2025-12-09 13:58
Investment Rating - The report maintains an "Outperform" rating for the company [4][58]. Core Insights - The company achieved a revenue of 171 million yuan in Q3 2025, representing a year-on-year growth of 144.2% and a quarter-on-quarter increase of 34.4% [1][6]. - The net profit for Q3 2025 was -307 million yuan, an improvement from -1.043 billion yuan in Q3 2024 and -406 million yuan in Q2 2025 [1][6]. - The company is a global leader in L4 autonomous driving products and solutions, with significant advancements in the commercialization of its L4 products [3][24]. Financial Performance - In Q3 2025, the company's gross margin was 32.9%, a year-on-year increase of 26.4 percentage points [2][14]. - The adjusted net profit margin for Q3 2025 was -161.2%, showing a significant improvement from previous quarters [2][14]. - The company’s expense ratio decreased to 254.9% in Q3 2025, down 1024.4 percentage points year-on-year [2][19]. Business Segments - The product business revenue in Q3 2025 was 79.2 million yuan, a remarkable year-on-year growth of 428.0%, driven by increased sales of Robotaxi and Robobus [1][7]. - The service business revenue reached 91.8 million yuan in Q3 2025, up 66.9% year-on-year, primarily due to growth in smart data services and autonomous driving-related operational and technical support services [1][7]. Market Developments - The company has accelerated the commercialization of its L4 products, with Robotaxi receiving a pure unmanned license from the Swiss Federal Roads Office [3][25]. - As of October 31, 2025, the company deployed over 300 Robotaxi vehicles in Guangzhou, achieving significant operational milestones [3][28]. - The company has partnered with Uber to launch L4 Robotaxi commercial operations in Abu Dhabi, marking a significant expansion in the Middle East [3][32]. Future Projections - The revenue forecast for 2025-2027 has been adjusted to 5.51 billion yuan, 10.00 billion yuan, and 18.66 billion yuan, respectively, reflecting a growth rate of 68.7%, 113.5%, and 58.9% [58]. - The projected net profit for the same period is expected to be -14.16 billion yuan, -13.10 billion yuan, and -10.18 billion yuan [58].
凯茜伍德再度减持特斯拉,大举买入百度
Xin Lang Cai Jing· 2025-12-09 13:29
责任编辑:张俊 SF065 伍德还加大了对自动驾驶领域的布局,通过ARK自主技术与机器人ETF(ARKQ)以约160万美元买入 17326股文远知行(WeRide,WRD)股票。此前摩根大通下调了该股目标价,导致其股价近期下跌 2.8%,但摩根大通仍维持"买入"评级,理由是随着无人驾驶出租车(robotaxi)监管政策逐步完善,该 股具备长期上涨潜力。 特斯拉则遭到减持,ARKK以92.3万美元出售了2100股,此举正值分析师对其合理估值表示担忧之际。 其他投资组合调整还包括GeneDX Holdings(WGS)、Tempus AI(TEM)和Arcturus Therapeutics (ARCT)。 著名投资者凯茜·伍德(Cathie Wood)旗下的ARK Invest基金周一调整了持仓,增持中国科技巨头百度 (BIDU)股份,同时削减了对特斯拉(TSLA)的持仓。 ARK创新ETF(ARKK)以约670万美元购入51263股百度股票。 花旗分析师Alicia Yap近期将百度的目标价上调至181美元,暗示其股价有近40%的上涨空间。她认为, 中国人工智能和云服务的持续增长正推动市场对该股的兴趣。 著名 ...
奔驰与中企合作在阿联酋推出自动驾驶出租车
Xin Hua Wang· 2025-12-09 13:16
新华社阿布扎比12月9日电(记者温新年 赵丹亮)德国车企梅赛德斯-奔驰、中国科技企业北京初 速度科技有限公司、阿联酋出行运营商卢莫公司日前在阿联酋首都阿布扎比共同宣布,三方合作的豪华 自动驾驶出租车项目将于2026年在当地投入商业运营,并将逐步拓展至全球更多市场。 据悉,该自动驾驶出租车基于新一代奔驰S级轿车量产平台打造,将奔驰车的豪华舒适与初速度研 发的自动驾驶技术深度融合,再结合卢莫公司本地化运营体系,旨在为全球自动驾驶出行树立新标杆。 北京初速度科技有限公司首席执行官曹旭东指出,三方合作将奔驰的工程经验、初速度的人工智能 技术与卢莫公司的运营能力相融合,将为用户带来兼具安全与豪华的全新出行体验。 据介绍,奔驰与北京初速度科技有限公司自2017年起开展合作,双方共同开发的智能辅助驾驶系统 已搭载于今年11月上市的奔驰全新纯电CLA车型,未来将覆盖更多奔驰车型。 【纠错】 【责任编辑:焦鹏】 阿联酋总统战略研究与先进技术事务顾问、先进技术研究委员会秘书长费萨尔·阿卜杜勒阿齐兹·班 奈表示,此次合作体现了自动驾驶领域的国际水准,阿联酋拥有清晰的战略愿景和良好的创新环境,为 未来出行方式提供了理想的试验场。 梅 ...
老虎环球新基金启动,聚焦这一领域!
Zheng Quan Shi Bao Wang· 2025-12-09 11:55
(原标题:老虎环球新基金启动,聚焦这一领域!) 全球知名投资机构老虎环球基金(Tiger Global Management)宣布启动其最新风险投资基金"PIP 17"(Private Investment Partners 17),计划募资22亿美元。这一举措标志着该公司从2021年的"广撒 网"式投资策略转向更为审慎和聚焦的模式。 新基金将聚焦人工智能 此外,老虎环球基金还斩获了阿里巴巴、京东、新东方、小米等多个IPO,还因成功投资领英 (LinkedIn)、Facebook、网飞(Netflix)等多个互联网公司,精准把握住了互联网爆发增长的时期, 再到后来云服务和大数据应用兴起的时期,孵化出一个又一个行业巨头。 成立初期,老虎环球基金的投资风格相对保守。数据显示,2000年至2010年期间,老虎环球基金平均每 年投出30个项目;而在接下来的10年中,老虎环球基金的布局逐渐提速,这一数字增长到每年45次。 老虎环球基金在投资者电话会议中透露,PIP 16基金迄今回报率达33%,而PIP 15基金回报率为16%。 这一反弹主要得益于其在OpenAI和自动驾驶公司Waymo的早期布局。 公开资料显示,老虎环 ...