傅里叶的猫

Search documents
【北京-芯片热管理】清华/北大/北航/中兴/中兴微电子/芯动/壁仞/Ansys/地平线/微电子所/增芯/超威/华天/立德/长电等
傅里叶的猫· 2025-04-29 14:48
"2025第二届高算力芯片开发者论坛暨芯片热管理技术交流会" 将于 5月22-23日 在 北 京 举办。本次论坛由 车乾信息&热设计网 主办,论坛重点探讨:国产AI芯片进程、AI芯 片安全、芯片封装Chiplet技术、先进封装材料与封装基板、AI 芯片热力设计、芯片直冷 技术、3DVC均温技术等。届时将安排 20+ 演讲,预计将超过 300+ 行业专家参会! 1.参会学习,包含服务:参会学习+会后资料+会议专属社群,费用:2500元/人 芯片热管理难题,车乾信息&热设计网继首届成功举办后,再度携手举办 "2025第二届高算力芯片开发者论坛暨芯片热管理技术交流会"。本次论坛 将于5月22-23日在北京举办,汇聚AI芯片领域的开发者、研究人员、企业 代表和专家学者,共同探讨前沿动态、创新应用和未来发展趋势。 会议概览 第一天上午 Al 芯片关键技术及发展趋势 第一天下午 AI芯片封装技术 AI芯片高效散热技术 第二天上午 企业参观 演讲信息 | 确认及确认中演讲单位 | 演讲话题 | | --- | --- | | 清华大学 | 电子系统的跨尺度热管理 | | 中兴通讯有限公司 | 浅谈高功率芯片散热 | | 芯 ...
RTX 5090的市场调研
傅里叶的猫· 2025-04-29 14:48
在供应链和厂商层面,像华硕、微星、技嘉等面向全球市场的厂商,更能从当前的高价环境中受益。而 像七彩虹这样主要深耕中国大陆市场、目前只能生产和销售5090D的厂商,其获利空间相对受到限制。 国内大型科技公司如阿里巴巴和腾讯,获取算力的途径主要有两种:一是通过正规渠道直接向英伟达采 购,二是也在外部市场收购消费级显卡(如90系列),但主流需求仍依赖正规途径。 关于英伟达的市场策略,5090芯片在所有显卡芯片中的占比和投放数量都相对有限。这部分是由于全球 范围内的年供应量有限,与市场需求之间存在显著差距。另一方面,英伟达也有意控制5090芯片的投 放,因为它不希望该型号被大规模用于数据中心,从而影响其利润率更高的专业AI计算卡(如A100、 H100等)的销售策略和市场份额。由于5090芯片的毛利率相对较低,英伟达会将其供应控制在一定范 围内,以维持整体产品线的利润结构。 总的来看,RTX 5090系列正处于高需求、高价格、供应受限的状态,并且在中国市场面临特殊的监管 挑战和产品调整。 最近一直在推RTX 5090的卡,我们这边找到了一些价格很有优势的渠道。也为此专门做了一些针对 5090的市场调研,跟大家分享一下 ...
外资顶尖投行研报分享
傅里叶的猫· 2025-04-26 11:15
星球中每日还会更新Seeking Alpha、Substack的精选付费文章, 现在星球中领券后只需要340元,即可 每天都能看到上百篇外资顶尖投行科技行业的分析报告和每天的精选报告,无论是我们自己做投资,还 是对行业有更深入的研究,都是非常值得的。 想要看外资研报的同学,给大家推荐一个星球,在星球中每天都会上传几百篇外资顶尖投行的原文研 报:大摩、小摩、UBS、高盛、Jefferies、HSBC、花旗、BARCLAYS 等。 还有专注于半导体行业分析的SemiAnalysis的全部分析报告: ...
GPU租赁价格调研
傅里叶的猫· 2025-04-26 11:15
Industry Trends Overview - The synergy between AI and cloud computing has created a tight feedback loop driven by technological iteration, application expansion, and computing power demand [3] - The rapid enhancement of AI large model capabilities is pushing AI from being an auxiliary tool to a core productivity driver, heavily relying on cloud service providers for continuous upgrades in computing power, storage, and operations [3] - For instance, Alibaba Cloud's ninth-generation ECS instance has seen a 20% increase in computing power while prices have decreased by 5%, lowering the AI development threshold for enterprises [3] Cloud Service Providers' Technological Upgrades and Competitive Landscape - Cloud service providers are engaged in intense competition centered around AI computing power demands, with leading firms building competitive advantages through differentiated technological paths [5] - Alibaba Cloud focuses on end-to-end optimization, achieving a 20% improvement in AI preprocessing efficiency and a 92% reduction in response time for its PAI platform [5][6] - Huawei Cloud emphasizes architectural innovation, with its CloudMatrix 384 super node achieving three times the GPU density of traditional servers, addressing enterprise needs for customized AI solutions [6] AI Model Progress and Multimodal Breakthroughs - The current phase of AI model iteration is driven by "multimodal + deep thinking," with significant breakthroughs transitioning from laboratories to commercial applications [7] - Upcoming releases like Qwen3 and Llama4 are expected to enhance logical reasoning and voice interaction capabilities, while Alibaba's Qwen2.5-Omni demonstrates end-to-end processing across four modalities [7][8] - The competition among AI models is intensifying, with Google’s Gemini 2.5 Pro showcasing its potential in complex reasoning tasks, while GPT-4o aims to improve image generation precision for enterprise needs [7] Computing Power Demand Surge and Price Transmission in the Industry Chain - The explosive growth of AI technology is leading to a significant surge in computing power demand, creating a structural shortage on the supply side [9] - For example, the price of H100 calls has jumped 22% within two weeks, reflecting the scarcity of computing resources [11] - In North America, IDC rents have increased by over 60% due to high demand and limited supply, while in China, the upgrade of AI-specific data centers has raised unit cabinet costs [15][16] Rise of Computing Power Leasing Models - The emergence of computing power leasing models is becoming a new variable to balance supply and demand contradictions, with companies like CoreWeave reducing marginal costs [17] - However, the sustainability of this business model depends on the downstream application side's ability to pay, as some startups face losses due to high inference costs [17] - Overall, the price transmission in the computing power industry chain is shifting from short-term spikes to long-term structural inflation, reinforcing the barriers for leading firms while posing risks for smaller players [17]