Workflow
Scaling Law
icon
Search documents
深度|2026年,AI将从炒作走向务实
Z Potentials· 2026-01-05 03:08
Core Insights - The article posits that 2026 will mark the transition of AI from hype to practical application, focusing on deploying lightweight models in real-world scenarios and integrating AI into human workflows [3][4]. Group 1: AI Development Trends - The industry is shifting from large-scale model expansion to new architectural research, emphasizing targeted deployment and collaboration tools that enhance human work [4]. - Many researchers believe the AI industry is nearing the limits of Scaling Law, indicating a need for new approaches beyond merely increasing model size [9]. - Smaller, fine-tuned language models (SLMs) are expected to become standard tools for mature AI enterprises by 2026 due to their cost and performance advantages [10]. Group 2: World Models and Gaming - 2026 is anticipated to be a pivotal year for world models, which learn how objects interact in three-dimensional space, enabling predictive capabilities [14][15]. - The gaming industry is projected to see significant growth, with the world model market expected to increase from $1.2 billion in 2022 to $276 billion by 2030, driven by the technology's ability to create interactive environments [16]. Group 3: Agent Integration and Automation - The introduction of Model Context Protocol (MCP) is seen as a key development that will facilitate the integration of AI agents with real-world systems, potentially marking 2026 as the year these agents transition from demonstration to practical application [18][19]. - There is a belief that AI will enhance rather than replace human workflows, with new job opportunities emerging in AI governance, transparency, and data management [21]. Group 4: Physical AI and Market Adoption - Advances in small models, world models, and edge computing are expected to drive the adoption of physical AI applications, with wearable devices becoming a cost-effective entry point for consumers [24]. - The market for physical AI, including robotics and autonomous vehicles, is projected to grow, although training and deployment costs remain high [24].
国信证券:模型架构继续演化 多模态+长文本为Agent爆发提供基础
Zhi Tong Cai Jing· 2026-01-05 02:15
复盘美股科技巨头过去三年股价走势,AI叙事不断递进 2023年OpenAI领先全球开启AI加速度,微软受益于OpenAI独家合作,估值抬升明显。2024年市场低估 模型进步空间,叙事转向推理侧,认为应用公司最优,Meta坐拥社交垄断生态(潜在Agent入口)和广告 场景,股价为除英伟达以外PE唯一抬升的巨头。(24年2月,英伟达业绩会估计数据中心收入约40%来自 推理。)同年云厂商由于大幅增加资本开支但供给受限,云收入传导有延迟,三大CSP估值略有所回 落。2025年模型差距与OpenAI明显收敛,谷歌后来居上,生态优势为市场追逐。26年该行认为Scaling Law将持续,模型厂商打开差异化应用市场,模型推理侧需求或进入放量拐点。模型和算力或为最优投 资方向。 2025年四家巨头Capex同比增长50%以上,26年该行测算Capex将持续实现30%以上增速 国信证券发布研报称,模型架构持续演化,多模态与长文本为Agent爆发奠定基础。当前大模型厂商商 业化路径分化,推理侧需求有望于2026年放量,并驱动SaaS市场格局重塑,编程、Agent等应用场景率 先实现商业化突破。 国信证券主要观点如下: 2025年 ...
人工智能行业专题(14):大模型发展趋势复盘与展望
Guoxin Securities· 2026-01-05 01:16
2026年01月04日 证券研究报告 | 2026年01月05日 人工智能行业专题(14) 大模型发展趋势复盘与展望 行业研究 · 行业专题 互联网 · 互联网Ⅱ 投资评级:优于大市(维持) 0755-81982651 证券分析师:张伦可 证券分析师:张昊晨 zhanglunke@guosen.com.cn zhanghaochen1@guosen.com.cn S0980521120004 S0980525010001 请务必阅读正文之后的免责声明及其项下所有内容 1 核心观点 请务必阅读正文之后的免责声明及其项下所有内容 • 复盘美股科技巨头过去三年股价走势,AI叙事不断递进。23年OpenAI领先全球开启AI加速度,微软受益于OpenAI独家合作, 估值抬升明显。24年市场低估模型进步空间,叙事转向推理侧,认为应用公司最优,Meta坐拥社交垄断生态(潜在Agent入 口)和广告场景,股价为除英伟达以外PE唯一抬升的巨头。 (24年2月,英伟达业绩会估计数据中心收入约40%来自推理。) 同年云厂商由于大幅增加资本开支但供给受限,云收入传导有延迟,三大CSP估值略有所回落。25年模型差距与OpenAI明显 ...
中美 AI 创投的真实差异|42章经
42章经· 2026-01-04 13:33
Jenny 是一个同时理解中美文化、创业、研究与投资的人。她从小在美国长大,2021 年加入 OpenAI,并在 ChatGPT 爆火一周后选择离开,合伙创立了自己的基 金。前一阵她回国,我们借机聊了聊中美 AI 创投之间的差异。 P.S. 本期节目录制于 2025.12.22。几天后,Manus 被微软收购的消息披露。回头再看,Jenny 分享的许多投资思路和对美国市场的判断,其实都有所映照。 本期播客原文约 23000 字,本文经过删减整理后约 7700 字。 曲凯 :你这两年观察到的几个最主要的 milestones 是什么? Jenny :在 23 年,中美都有一个非常明确的共识:投大模型。在美国,就是持续给 OpenAI、Anthropic 这样的公司投钱。这些公司这两年发展得很快,也确实拿 走了行业里大部分的利润。 23 年的另一个共识是,很多人觉得应用只是「套壳」,很轻、很薄,没什么价值。 但到了 24、25 年,这个判断开始发生变化,因为很多应用层公司逐渐做出了自己的特色和护城河,比如 Cursor、Perplexity。 最近两年,Agent 很火。但在真实场景中,AI Agent 的落地依 ...
Hinton加入Scaling Law论战,他不站学生Ilya
量子位· 2026-01-01 02:13
一水 发自 凹非寺 量子位 | 公众号 QbitAI 我并不认为Scaling Law已经完全结束了 。 正当学生Ilya为Scaling Law"泼下冷水"时,他的老师、AI教父Geoffrey Hinton却毅然发表了上述截然相反的观点。 这一场面一出,我们不禁回想起了两件有趣的事。 一是Ilya几乎从学生时代起就坚信Scaling Law,不仅一抓住机会就向身边人安利,而且还把这套理念带进了OpenAI。 可以说,Ilya算是Scaling Law最初的拥趸者。 二是Hinton后来在回顾和Ilya的相处时,曾大肆夸赞Ilya"具有惊人的直觉",包括在Scaling Law这件事上,Hinton曾坦言: 当时的我错了,而Ilya基本上是对的。 比如Transformer确实是一种创新想法,但实际上起作用的还是规模,数据的规模和计算的规模。 但是现在,这对师徒的态度却来了个惊天大反转。 所以,这中间到底发生了什么? Scaling Law不死派:Hinton、哈萨比斯 其中,最大的挑战无疑是数据缺失问题。 大部分高价值数据都锁在公司内部,免费互联网数据已基本耗尽。 而这个问题将由AI自行解决,即模型通过推 ...
DeepMind内部视角揭秘,Scaling Law没死,算力即一切
3 6 Ke· 2025-12-31 12:44
Core Insights - The year 2025 marks a significant turning point for AI, transitioning from curiosity in 2024 to profound societal impact [1] - Predictions from industry leaders suggest that advancements in AI will continue to accelerate, with Sam Altman forecasting the emergence of systems capable of original insights by 2026 [1][3] - The debate around the Scaling Law continues, with some experts asserting its ongoing relevance and potential for further evolution [12][13] Group 1: Scaling Law and Computational Power - The Scaling Law has shown resilience, with computational power for training AI models growing at an exponential rate of four to five times annually over the past fifteen years [12][13] - Research indicates a clear power-law relationship between performance and computational power, suggesting that a tenfold increase in computational resources can yield approximately three times the performance gain [13][15] - The concept of "AI factories" is emerging, emphasizing the need for substantial computational resources and infrastructure to support AI advancements [27][31] Group 2: Breakthroughs in AI Capabilities - The SIMA 2 project at DeepMind demonstrates a leap from understanding to action, showcasing a general embodied intelligence capable of operating in complex 3D environments [35][39] - The ability of AI models to exhibit emergent capabilities, such as logical reasoning and complex instruction following, is linked to increased computational power [16][24] - By the end of 2025, AI's ability to complete tasks has significantly improved, with projections indicating that by 2028, AI may independently handle tasks that currently require weeks of human expertise [41] Group 3: Future Challenges and Considerations - The establishment of the Post-AGI team at DeepMind reflects the anticipation of challenges that will arise once AGI is achieved, particularly regarding the management of autonomous, self-evolving intelligent agents [43][46] - The ongoing discussion about the implications of AI's rapid advancement highlights the need for society to rethink human value in a world where intelligent systems may operate at near-zero costs [43][46] - The physical limitations of power consumption and cooling solutions are becoming critical considerations for the future of AI infrastructure [31][32]
2025最后一天,Kimi杨植麟发内部信:我们手里还有100亿现金
3 6 Ke· 2025-12-31 12:38
Core Insights - The founder and CEO of Kimi, Yang Zhilin, announced that the company currently holds over 10 billion yuan in cash and is not in a hurry to go public [1][2] - Kimi recently completed a $500 million Series C funding round, led by IDG with a $150 million investment, and the post-money valuation reached $4.3 billion [1][2] - Kimi's paid user base saw a month-over-month growth rate of 170% from September to November 2025, potentially reaching around 1.7 million users by the end of the year [2][5] Financial Performance - Assuming an initial paid user count of 100,000 at the beginning of 2025, the estimated monthly revenue could reach approximately 85 million yuan by year-end, with API revenue potentially bringing total monthly revenue close to 100 million yuan [2][5] - The company has a significant cash reserve, which allows it to avoid rushing into an IPO, indicating a strong financial position to face competition in 2026 [2][5] Product Development - Kimi plans to launch the K2 and K2 Thinking models in September and November 2025, focusing on explainability in reasoning processes and complex logical reasoning [1][2] - The company has been actively releasing new agent functionalities since May 2025, contributing to a substantial increase in commercial performance [5][6] Strategic Goals - Kimi aims to surpass leading companies like Anthropic to become a world leader in AGI, with plans to enhance the K3 model's capabilities significantly [6][7] - The company is focusing on vertical integration of model training and agent products, aiming for a unique user experience and substantial revenue growth [7][8] Future Plans - A reward scheme for the K2 Thinking model and subsequent products is expected to be established before the 2026 Spring Festival, with average incentives projected to be 200% of 2025 levels [2][6] - The company intends to utilize the Series C funding to aggressively expand GPU resources and accelerate the training and development of the K3 model [6][7]
年终盘点|大模型洗牌、分化、冲上市,无人再谈AI六小龙
Di Yi Cai Jing Zi Xun· 2025-12-31 06:03
2025年的尾声,智能体初创公司Manus宣布被Meta收购,智谱华章与MiniMax前后脚赴港上市,其中智 谱最快明年1月8日在港交所挂牌。 热度裹挟之下,大模型参赛选手正经历一轮剧烈的"适者生存"筛选:创业公司或冲刺上市抢滩资本市 场,或收缩战线聚焦垂直场景深耕,或黯然退出基座竞赛;大厂则凭借算力、数据与生态优势全面压 境,在技术迭代与场景落地中加速收割市场份额。 看向未来,旧的规模化竞赛已见顶,新范式的探索之路刚刚启程,谁能率先突破Scaling Law的瓶颈, 谁就能在下一轮格局中占据先发优势。还有从业者对记者表示:如果说2025年关注的是AI模型能做什 么,那么到2026年更关注AI到底该怎么样去赚钱,并且是产业化地赚钱。 创业赛道"生死分化" 国内市场中,"六小龙"概念已成为过去时,基础模型创业赛道彻底分化,互联网大厂正式发力;国外市 场中,包括OpenAI、Google、Anthropic等头部厂商在基础模型领域交替领先,同步寻找在应用端的机 会,顶级研究人员在Scaling Law陷入增长瓶颈期后,尝试探索新的技术范式。 红杉资本中国基金合伙人郑庆生认为,2025年的AI赛道已带有转折的意味。 ...
摩尔线程天使投资人:对近期AI的四十个观察
机器之心· 2025-12-30 12:10
机器之心发布 本文作者为摩尔线程天使投资人、中国初代 AI 投资人王捷。他于今年 8 月发表了《浮现中的 AI 经济》一文,对即将到来的 AI 经济进行了 展望和解读。本篇文章是他近期对当前 AI 的思考的小结。 关于 AI 经济的四十个问题 《浮现中的 AI 经济》(以下简称 "文章")发表以来,AI 行业继续发生了众多大事,OpenAI 牵头的千亿美金 "循环交易" 引发 "AI 泡沫论" 大讨论,模型公司估值 来到数千亿美金级别,而 Gemini 3 和 GPT5.2 等新发布模型版本又持续体现了能力进步,中国模型也持续在开源领域保持全球领先。 我们看到,与 AI 相关的历史事实,正继续以 " 非 线 性、非均匀 " 的特征往前发展:Scaling Law 并未收敛,AI 行业继续呈现加速发展的特点,与 AI 相关的经济 活动规模来到了前所未有的量级;同时,历史进程呈现出 "非均匀" 的面貌,虽然人们是在同一个时空下,但是与 AI 有关的经济社会活动,和与 AI 无关的经济社 会活动,看起来不在同一个历史进程中,前者正以强大的动能迅猛往前发展,而后者维持着我们所熟悉和习惯的、传统工业经济的节奏和特点。 ...
神秘的“华为系”具身团队,回应11个关键问题
3 6 Ke· 2025-12-30 09:27
文|王欣 编辑|苏建勋 在2025年火热的具身智能创业潮中,"它石智航"有着绝对吸睛的实力。 这是一个由国内智驾黄埔军校核心高管组成的"梦之队"。它石智航首席执行官陈亦伦曾在华为车BU担 任自动驾驶系统CTO;首席科学家丁文超曾是华为"天才少年"。董事长李震宇则担任过百度智能驾驶事 业群原总裁,打造过全球最大的Robotaxi出行平台"萝卜快跑"。 在自动驾驶行业,陈亦伦、李震宇均是带过千人团队、打过胜仗的"名将",两人的合作创业,也让它石 智航迅速成为资本的宠儿。在今年3月,它石智航以1.2 亿美元的融资额,创下中国具身智能行业天使轮 最大融资额纪录。 资本看重它石智航的技术积累和人才储备。线性资本创始人兼 CEO 王淮曾这样评价它石智航:"他们能 将之前在华为做自动驾驶的很多软硬件打磨的经验,结合大模型的思考和推理能力,落实在具身机器人 身上。" 可在天使轮融资破纪录,创始团队如此豪华的状况下,不同于其他具身智能公司高频地披露出货量与技 术突破,2025年一年,它石智航鲜少公布进展。 12月19日,它石智航办了一场线上发布会,持续时间只有短短40分钟,展示的成果,是"全球首个完成 刺绣的机器人"。 为什么 ...