Workflow
GPGPU
icon
Search documents
AI基座筑基、机器人应用破局 中国企业加速追赶全球前沿
中经记者罗辑上海报道 当然,整体而言,仍需正视当前AI算力基座、机器人行业在规模、长期生存力、算法等相关方面,与 海外发达国家存在的一定差距。但国内科创企业正在迎难而上,正通过应用端牵引、协同研发和持续投 入创新,有望快速缩小差距。 算力基座多领域突破显现 在下游客户对先进制程工艺和自主可控的迫切性增强、需求快速增长的背景下,在AI算力基座领域, 从芯片设计到存储、EDA(电子设计自动化)软件,海光信息、佰维存储、概伦电子正在为中国AI的 加速发展提供关键支撑。 "海光信息作为拥有CPU(高端通用处理器)与GPGPU(协处理器)双产品线的企业,已成功实现了多 代际产品的研发创新和商业化落地,广泛应用于金融、通信、互联网、教育等关键行业。"海光信息架 构师王博士介绍,除产品线外,海光信息已布局形成"芯片设计—整机交付—软件生态"的完整链条。 "从以'计算为主'转向'AI强化'——大幅提升AI计算性能,公司提前布局高带宽低延迟的相关技术,并与 上下游产业链深度协作。"王博士称。 佰维存储则聚焦半导体存储,产品覆盖NAND Flash(一种非易失性存储技术)与DRAM(动态随机存 取存储器),深耕手机、个人计算机、 ...
“硬科硬客”2025年会闭门研讨之二|AI基座筑基、机器人应用破局 中国企业加速追赶全球前沿
中国人工智能、机器人行业发展如何?核心企业取得了哪些重要成果或进展?国内企业和国际企业技术 差距多大?产业链上下游协同如何?…… "从以'计算为主'转向'AI强化'——大幅提升AI计算性能,公司提前布局高带宽低延迟的相关技术,并与 上下游产业链深度协作。"王博士称。 佰维存储则聚焦半导体存储,产品覆盖NAND Flash(一种非易失性存储技术)与DRAM(动态随机存 取存储器),深耕手机、个人计算机、服务器三大传统市场,并在AI穿戴、工业与智能汽车两大新兴 领域快速突破。 "2024年,佰维存储AI新兴端侧业务收入超10亿元,且具备主控芯片设计、封测等全产业链服务能 力。"佰维存储总经理何瀚表示,AI本身的发展对存储提出了更高的要求。同时AI带来了一些新的应 用,需要开发新的解决方案。此外,AI时代存和算需要更多的整合。 2025年9月10日下午,上海浦东香格里拉大酒店南京厅内,一场聚焦人工智能与机器人产业链的闭门研 讨会如期举行。围绕"左手是AI(人工智能)的基座,右手是机器人和应用"的多项议题,来自AI算力基 座、机器人领域及AI应用领域的科创板上市公司核心高层,与众多机构投资者进行了深入交流。其 中,上 ...
印度要自研2nm GPU
半导体行业观察· 2025-06-09 00:53
公众号记得加星标⭐️,第一时间看推送不会错过。 可 以 肯 定 的 是 , 纳 米 尺 寸 越 小 , 芯 片 就 越 先 进 。 当 今 最 先 进 的 主 流 芯 片 是 3 纳 米 工 艺 , 例 如 苹 果 iPhone和其他消费设备中使用的芯片。 自2022年ChatGPT首次亮相以来,GPU已成为人工智能的关键——这使英伟达的价值增长了十倍, 并使其成为全球市值第二高的公司。尽管印度拥有强大的芯片设计人才,但缺乏自主研发的GPU专 利,导致其在核心人工智能技术方面依赖美国公司。印度正在寻求改变这种依赖。 上述第二位官员表示,该芯片的早期预览版将于2025年底展示,Minthad上个月已报道过此事。然 而,即使C-Dac开发出2纳米芯片,印度在未来五年内也不太可能拥有一家能够生产此类芯片的国内 制造工厂,因此"我们很可能会与台积电(TSMC)合作进行大规模生产",第二位官员表示,并补充 说,印度GPU的成本"将比英伟达目前的芯片零售价低50%"。 截至发稿时,一封要求Meity和C-Dac就此事置评的电子邮件仍未得到回复。 芯片客户 诚然,印度历来是美国芯片制造商英特尔、AMD、高通和英伟达的客户, ...
东吴证券晨会纪要-2025-03-14
Soochow Securities· 2025-03-13 23:33
证券研究报告 [Table_MacroStrategy] 海外周报 20250309:紧财政冲击美股情绪,非农暂缓衰退担忧 核心观点:本周公布的美国经济数据喜忧参半,非农就业略不及预期但走 弱幅度相对可控,一定程度上缓解了近期市场对于美国经济过于悲观的 预期。但同时,特朗普及其内阁"紧财政"思路逐步浮出水面,欧美财政 叙事的分化给美股市场情绪带来更大的冲击,美元、美股大跌。下周关注 2 月美国 CPI 和 3 月 14 日再度到来的政府停摆风波。向前看,我们认为 美国经济仍有韧性,但特朗普政策对市场情绪的扰动仍是当前大类资产 的主导因素。虽然短期美国财政赤字实质性削减的空间十分有限,但考虑 到本届共和党在众议院较为微弱的优势、债务上限的掣肘等因素,不可忽 视"紧财政"预期对市场情绪和风险资产的打压。 宏观量化经济指数周报 20250309:新增贷款:2 月同比少增,1-2 月同比 持平 2 月国内挖机销量同比增长 99.4%,指向项目开工进程或开始提速 宏观点评 20250307:财政扩张令德国国债利率飙升 东吴证券晨会纪要 东吴证券晨会纪要 2025-03-14 宏观策略 德国国债利率飙升:德国新领导人在周 ...
东吴证券晨会纪要-2025-03-13
Soochow Securities· 2025-03-13 00:50
证券研究报告 东吴证券晨会纪要 东吴证券晨会纪要 2025-03-13 宏观策略 [Table_MacroStrategy] 海外周报 20250309:紧财政冲击美股情绪,非农暂缓衰退担忧 核心观点:本周公布的美国经济数据喜忧参半,非农就业略不及预期但走 弱幅度相对可控,一定程度上缓解了近期市场对于美国经济过于悲观的 预期。但同时,特朗普及其内阁"紧财政"思路逐步浮出水面,欧美财政 叙事的分化给美股市场情绪带来更大的冲击,美元、美股大跌。下周关注 2 月美国 CPI 和 3 月 14 日再度到来的政府停摆风波。向前看,我们认为 美国经济仍有韧性,但特朗普政策对市场情绪的扰动仍是当前大类资产 的主导因素。虽然短期美国财政赤字实质性削减的空间十分有限,但考虑 到本届共和党在众议院较为微弱的优势、债务上限的掣肘等因素,不可忽 视"紧财政"预期对市场情绪和风险资产的打压。 宏观量化经济指数周报 20250309:新增贷款:2 月同比少增,1-2 月同比 持平 [Table_FixedGain] 固收点评 20250312:1.9%以上的 10 年期国债具有配置价值 10 年期国债收益率的合理点位在 2.0-2.2% ...
算力芯片看点系列:GPGPU与ASIC之争
Soochow Securities· 2025-03-13 00:30
Investment Rating - The report maintains an "Overweight" investment rating for the electronic industry [1] Core Viewpoints - The competition between GPGPU and ASIC chips is highlighted, with ASICs focusing on low-precision tasks and showing better power efficiency, but still lagging behind GPGPU in certain performance metrics [5][8] - Major companies are increasingly investing in self-developed AI chips to meet the growing demand for AI applications, with significant capital expenditures expected to cover initial development costs [5][16] - The report recommends investing in companies like Cambricon and Haiguang Information, while also suggesting to pay attention to ZTE, Aojie Technology, and Chipone [5] Summary by Sections 1. GPGPU vs ASIC Performance Comparison - ASICs primarily target low-precision data types, which are sufficient for large model training, while GPGPU excels in high-precision tasks [8] - In terms of power efficiency, ASICs generally have better power control and efficiency ratios compared to GPGPU [8][11] - GPGPU's memory bandwidth and capacity still surpass those of ASICs, although ASICs have higher computational density [11][12] 2. Reasons for Major Companies Developing AI Chips - The cost structure for chip companies includes employee salaries, EDA and IP costs, manufacturing expenses, and sales costs, with salaries making up a significant portion [16][17] - The report estimates that a digital chip Fabless company requires approximately 9.7 billion yuan for salaries alone for a development team [17][18] - The demand for AI inference is expected to grow significantly, with major companies building large-scale clusters to support this demand [18][19] 3. Who Can Manufacture AI Chips for Major Companies? - Broadcom is identified as a leader in AI interconnect technology, with a strong IP ecosystem and significant market share in AI custom chip services [21][24] - Marvell is noted for its rapid growth in the AI chip market, with a significant increase in AI-related revenue and partnerships with major cloud service providers [25][27] - AIchip is recognized for its advanced 3DIC and process technology, addressing efficiency and performance challenges in AI and high-performance computing [28][29]
电子行业点评报告:算力芯片看点系列-GPGPU与ASIC之争
Soochow Securities· 2025-03-12 14:59
Investment Rating - The report maintains an "Overweight" investment rating for the electronic industry [1]. Core Viewpoints - The competition between GPGPU and ASIC chips is highlighted, with ASICs focusing on low-precision tasks and showing better power efficiency, but still lagging behind GPGPU in certain performance metrics [5][8]. - Major companies are increasingly investing in self-developed AI chips to meet the growing demand for AI applications, with significant capital expenditures expected to cover initial development costs [5][16]. - The report recommends investing in companies like Cambricon and Haiguang Information, while also suggesting to pay attention to ZTE, Aojie Technology, and Chipone [5]. Summary by Sections 1. GPGPU vs. ASIC Performance Comparison - ASICs primarily target low-precision data types, which are sufficient for large model training, while GPGPU excels in high-precision tasks [8]. - ASICs have better power control and efficiency for specific tasks, but GPGPU still outperforms in certain metrics, such as NVIDIA's GB200 [8][11]. - The report notes that ASICs have high computational density but face challenges in memory bandwidth compared to GPGPU [5][11]. 2. Reasons for Major Companies to Develop AI Chips - The report outlines the cost structure of chip companies, emphasizing that employee salaries constitute a significant portion of expenses [16][17]. - It estimates that a digital chip Fabless company requires approximately 9.7 billion yuan for employee salaries over a two-year product development cycle [18]. - The demand for AI inference is expected to grow significantly, with NVIDIA reporting that 40% of its data center revenue comes from inference business [18] . 3. Who Can Manufacture AI Chips for Major Companies? - Broadcom is identified as a leader in AI interconnect technology, with a strong IP ecosystem and significant market share in AI custom chip services [21][24]. - Marvell is noted for its rapid growth in the AI chip market, with a significant increase in AI-related revenue and partnerships with major cloud service providers [25][27]. - AIchip is recognized for its advanced 3DIC and process technology, which addresses efficiency and performance challenges in AI and high-performance computing [28][29].