Workflow
DeepSeek R1大模型
icon
Search documents
AI诊疗之辩:“神助攻”还是“乌托邦”
Mei Ri Shang Bao· 2025-06-19 23:20
Core Viewpoint - AI technology is rapidly entering the healthcare sector, with diverse applications emerging, including surgical robots and digital health management, leading to a surge in AI-related news and discussions about its reliability and accountability [1] Group 1: AI in Healthcare Applications - The integration of DeepSeek R1 model into Zhejiang University Shao Yifu Hospital's health management platform allows for real-time health monitoring and personalized health risk assessments based on extensive medical data [2] - The "smart critical care" system developed by Zhejiang Hospital has recorded over 5,000 patient data entries and is capable of identifying infection risks up to 8 hours in advance, significantly improving treatment efficiency [3][4] Group 2: Limitations and Concerns of AI - AI cannot replace doctors in diagnosis or prescription, as it lacks the ability to engage in nuanced patient interactions and clinical judgment, which are crucial in complex medical cases [7][10] - There are concerns regarding the accuracy of AI-generated medical advice, with studies indicating that while some AI models achieve around 80% diagnostic accuracy, the remaining 20% error rate poses significant risks in healthcare [6][7] Group 3: Patient Interaction with AI - Many patients still prefer direct interaction with healthcare professionals over AI tools, particularly older patients who may struggle with technology [5][6] - Instances of AI systems generating prescriptions without thorough patient evaluations raise ethical and safety concerns, highlighting the need for stringent oversight in AI-assisted medical practices [9][10] Group 4: Regulatory and Ethical Considerations - The National Health Commission emphasizes that AI is a tool to assist healthcare professionals, and any errors should not be used as an excuse for inadequate medical practice [10] - The sensitive nature of medical data complicates the use of AI, necessitating careful management to protect patient privacy while leveraging AI capabilities [7][10]
汽车和汽车零部件行业周报20250615:车企承诺降低账期,整零关系走向双赢-20250615
Minsheng Securities· 2025-06-15 08:21
➢ 华为开发者大会即将召开,看好华为具身智能布局加速。1)玩家维度:华 为开发者大会是近期重磅催化。华为近期在具身智能领域动作频频,即将于 6 月 20 日举办开发者大会,为后续潜在催化。去年开发者大会上,乐聚夸父人形机器 人首度亮相,今年 AI+机器人领域进展值得期待。我们认为,华为具身智能布局 不断明确,0-1 阶段想象空间最大。2)产品维度:关注边际变化最大的硬件环 节。潜在变化大的环节包括灵巧手传动方案/触觉传感器构型、类 RV 对髋关节谐 波的替代、轻量化材料选型。4 月底以来,产业链关于 PEEK 材料应用的信息催 化了细分板块的强势表现,其他环节存在类似的潜在机会。看好华为具身智能布 局加速,产品维度-看好灵巧手、轻量化等边际变化大的硬件环节。 汽车和汽车零部件行业周报 20250615 车企承诺降低账期 整零关系走向双赢 2025 年 06 月 15 日 ➢ 本周数据:2025 年 6 月第 1 周(6.2-6.8)乘用车销量 36.2 万辆,同比 +12.4%,环比-22.3%;新能源乘用车销量 20.2 万辆,同比+18.9%,环比-18.4%; 新能源渗透率 55.7%,环比+2.6pc ...
CGI宏观视点 | 从规模不经济到规模新经济
中金点睛· 2025-04-01 23:34
宏观视点 中国的绿色产业在全球处于领先位置,近期DeepSeek的突破令各界重新审视中国的AI发展水平和创新 能力,另一方面,需求疲弱仍然是经济面临的突出问题。如何理解这组反差?宏观上可以总结为从规 模不经济走向规模新经济。绿色和数字经济是规模新经济的突出代表,不仅体现在大规模生产降低单 位成本,更重要的是规模经济促进创新的动态过程。中国处于一个独特的地位,既可得益于发展差距 带来的追赶效应,也拥有大国规模经济促进创新的优势。 但发挥规模经济效应面临两方面的挑战。内部来讲,从金融周期上半场的繁荣到下半场的调整,虽然 房地产的规模不经济属性在供给侧对生产力的抑制下降,但其作为信贷抵押品的角色在需求侧带来债 务紧缩压力,需求不足阻碍了规模经济效应的充分发挥。外部来讲,在新的地缘经济形势下,中美合 作的"G2模式"遭到挑战,中国面临纵向"卡脖子"和横向"去中心化"压力,前者不利于追赶,后者不利 于发挥规模经济效应,尤其是美国的关税政策加剧中国的需求不足问题。 应对挑战的关键是促进科技创新与产业创新融合发展,减少对过去产业创新形成的"重供给与资产"的 路径依赖,以"重需求与人才"促进科技创新。在财政层面,在政府对研发 ...
不止是数字游戏:快手财报中8个值得关注的AI关键点
华尔街见闻· 2025-03-26 09:52
Core Viewpoint - Kuaishou's 2024 financial report highlights a total revenue of 126.9 billion RMB, a year-on-year increase of 11.8%, and an adjusted net profit of 17.7 billion RMB, up 72.5%. The company is leveraging AI not just as a concept but as a revenue-generating engine, distinguishing itself in the competitive landscape of Chinese tech stocks [1][3][24]. Group 1: AI Strategy and Breakthroughs - Kuaishou's AI strategy has achieved eight core breakthroughs that are reshaping the short video industry and defining the future of the digital content sector [3]. - The first breakthrough is the recognition of Kuaishou's Keling AI as a global leader in technology, with its video generation capabilities ranked second only to Google's Veo 2 [4][5]. - The second breakthrough involves a comprehensive AI matrix with three technical pillars: visual model (Keling), language model (Kuaiyi), and recommendation model (ACT), creating a systemic technological barrier [6][7]. - The third breakthrough is the rapid commercialization of Keling AI, which has generated over 100 million RMB in revenue within months of its launch [8]. - The fourth breakthrough is the enhancement of Kuaishou's commercial ecosystem, with online marketing service revenue reaching 20.6 billion RMB, surpassing Baidu's 17.9 billion RMB [9]. Group 2: Content Production and Cost Efficiency - The fifth breakthrough is the democratization of creative production, allowing ordinary users to become content creators, thus enhancing user engagement and commercial conversion efficiency [13][14]. - The sixth breakthrough involves a revolutionary restructuring of content production costs, exemplified by the success of the AIGC micro-drama "Shan Hai Qi Jing," which significantly reduced production team size and costs [16][18]. Group 3: New Business Models and Ecosystem - The seventh breakthrough is the "Future Partner Program," which connects brands with creators, fostering a new ecosystem that enhances brand marketing efficiency [19]. - The eighth breakthrough is the revaluation of Kuaishou's technology company status, as investors reassess its long-term value in light of Keling AI's success and global impact [20][21]. Group 4: Market Context and Future Outlook - The current wave of revaluation for Chinese tech stocks, particularly Kuaishou, is seen as just the beginning, with the potential for significant valuation recovery as AI's value becomes more apparent [22][23].
我所见过的梁文锋
投资界· 2025-02-07 07:54
聪明投资者 . 聚焦优秀投资人和企业家,甄选高质量的内容,追求可累进的成长。更多内容可下载"聪明投资 者"APP,官网:www.cmtzz.cn 一名爱好量化投资的程序员。 排版 | 关鹤九 责编 | 艾暄 来源 | 聪明投资者 (ID:Capital-nature) 01 第一次见梁文锋,是2018年的6月份,幻方量化杭州总部。 以下文章来源于聪明投资者 ,作者永远好奇的 2018年的量化市场刚刚显露今天的格局,机构调研时挂在嘴边的那些公司的名字,包括 幻方、九坤、明汯们,背后承载的规模也仅仅是今天的零头。 当时成立3年的幻方管理客户资金约45亿,自营盘约10个亿。已经是量化的第一梯队。 作为掌门人的梁文锋一直隐形在幕后,很长一段时间业界都以为公司核心高管是另外两 位。 托一个朋友的福,围观了这次罕见的深度调研。 梁文锋走进小会议室面对面坐下时,捧着一个保温杯,穿着深蓝色的工装绒棉衬衫。很 瘦削,有点拘谨,活脱是上个世纪90年代的工程师模样。 瞬间有了跟一则趣闻对号入座的即视感:据说他买了新房却一直醉心于开发策略而无心 装修,所以在房间里支了帐篷睡觉。 同事说他除了编程,没有什么其他的爱好。 提前被安利了梁 ...