Workflow
电力设备及新能源
icon
Search documents
电子、化工获集中推荐,机构对年末行情现分歧
Zhong Guo Ji Jin Bao· 2025-12-02 07:09
【导读】电子、化工获集中推荐,机构对年末行情现分歧 中国基金报记者 舍梨 | 巨星科技 | 机械设备 | | | --- | --- | --- | | 古井贡酒 | 食品饮料 | | | 牧原股份 | 农林牧渔 | | | 巨人网络 | 传媒 | | | 信达生物 | 医药生物 | | | 恒立液压 | 机械设备 | 国金证券 | | 中国国航 | 交通运输 | | | 李宁 | 纺织服饰 | | | 古茗 | 食品饮料 | | | 高德红外 | 国防军工 | | | 国泰海通 | 非银金融 | | | 蓝特光学 | 甲子 | | | 海康威视 | 计算机 | | | 新易盛 | 通信 | | | 日李药业 | 医药生物 | | | 港股红利低波ETF | | | | 人工智能ETF富国 | | | | 华锐精密 | 机械设备 | | | 冠盛股份 | 汽车 | | | 首旅酒店 | 社会服务 | | | 锦江酒店 | 社会服务 | | | 上海沿浦 | 汽车 | | | 美湖股份 | 汽车 | 中泰证券 | | 中国东航 | 交通运输 | | | 兆易创新 | 电子 | | | 华鲁恒升 | 基础化工 | ...
主动量化策略周报:CANSLIM 行业轮动策略 12 月配置建议:关注钢铁、银行、建筑、公用事业、电新等行业-20251201
Guoxin Securities· 2025-12-01 09:00
证券研究报告 | 2025年12月01日 主动量化策略周报 CANSLIM 行业轮动策略 12 月配置建议: 关注钢铁、银行、建筑、公用事业、电新等行业 核心观点 金融工程周报 本报告对 CANSLIM 行业轮动策略的样本外表现进行跟踪,从多个维度解析 行业景气度情况并最终给出月度行业配置建议,以供投资者参考。 行业轮动因子表现 上月以来(20251103-20251128),超大单资金净流入金额占比和券商金股 行业变动因子表现较好,SUE、PB 和单季度 ROE 增速因子表现较差; 今年以来(20250102-20251128),公募重仓股动量、SUE 和分析师认可 度和因子表现较好,而成交量调节动量、公募基金持仓行业变动和超大单资 金净流入金额占比因子表现较差。 上月组合绩效回顾 上月以来(20251103-20251128),行业轮动组合收益率-1.09%,同期中 信一级行业等权指数收益率-1.16%,组合超额收益率 0.08%。 今年以来(20250102-20251031),行业轮动组合收益率 20.48%,同期中 信一级行业等权指数收益率 20.20%,组合超额收益率 0.28%。 本月组合推荐情 ...
金融工程月报:券商金股2025年12月投资月报-20251201
Guoxin Securities· 2025-12-01 06:50
证券研究报告 | 2025年12月01日 金融工程月报 券商金股 2025 年 12 月投资月报 券商金股股票池中选股因子表现 最近一个月,总市值、单季度超预期幅度、SUR 表现较好,日内收益率、 分析师净上调幅度、分析师净上调比例表现较差; 今年以来,总市值、单季度营收增速、SUR 表现较好,EPTTM、预期股息 率、BP 表现较差。 券商金股股票池本月特征 截至 2025 年 12 月 1 日,共有 41 家券商发布本月金股。在对券商金股股票 池进行去重后,总共有 264 只 A 股。 从绝对占比来看,本期券商金股在电子(15.38%)、基础化工(7.96%)、机械 (7.43%)、有色金属(6.90%)、电力设备及新能源(6.10%)行业配置较高。 核心观点 金融工程月报 券商金股股票池上月回顾 2025 年 11 月,蓝色光标、延江股份、苏州天脉等券商金股股票的月度上涨 幅度靠前。 2025 年 11 月,国联民生证券、国元证券、华鑫证券收益排名前三,月度收 益分别为 4.48%、3.40%、0.64%,同期偏股混合型基金指数收益-2.45%, 沪深 300 指数收益-2.46%。 2025 年以来, ...
主动量化策略周报: CANSLIM 行业轮动策略 12 月配置建议:关注钢铁、银行、建筑、公用事业、电新等行业-20251201
Guoxin Securities· 2025-12-01 06:46
证券研究报告 | 2025年12月01日 主动量化策略周报 CANSLIM 行业轮动策略 12 月配置建议: 关注钢铁、银行、建筑、公用事业、电新等行业 本报告对 CANSLIM 行业轮动策略的样本外表现进行跟踪,从多个维度解析 行业景气度情况并最终给出月度行业配置建议,以供投资者参考。 行业轮动因子表现 上月以来(20251103-20251128),超大单资金净流入金额占比和券商金股 行业变动因子表现较好,SUE、PB 和单季度 ROE 增速因子表现较差; 今年以来(20250102-20251128),公募重仓股动量、SUE 和分析师认可 度和因子表现较好,而成交量调节动量、公募基金持仓行业变动和超大单资 金净流入金额占比因子表现较差。 上月组合绩效回顾 上月以来(20251103-20251128),行业轮动组合收益率-1.09%,同期中 信一级行业等权指数收益率-1.16%,组合超额收益率 0.08%。 今年以来(20250102-20251031),行业轮动组合收益率 20.48%,同期中 信一级行业等权指数收益率 20.20%,组合超额收益率 0.28%。 本月组合推荐情况 我们借鉴 CANSL ...
哪些股票受指数定期调整冲击较大?【国信金工】
量化藏经阁· 2025-12-01 00:08
Group 1 - The core viewpoint of the article highlights the significant growth of index investment, with the scale of stock ETFs reaching 4.11 trillion yuan by Q3 2025, while the total scale of passive index funds (including ETFs) reached 4.44 trillion yuan [2][6] - The number of passive index funds tracking A-share stock indices has increased to 1,521, with 56 indices having a tracking scale exceeding 10 billion yuan as of November 28, 2025 [5][6] - Major indices with the largest tracking scales include the CSI 300 at 1,181.33 billion yuan, the CSI A500 at 195.35 billion yuan, and the SSE 50 at 188.34 billion yuan [7] Group 2 - The article discusses the impact of index component stock adjustments, which are conducted biannually by index companies, potentially creating trading opportunities due to significant changes in component stocks [6][8] - The methodology for measuring the impact of these adjustments includes calculating the net adjustment scale for individual stocks based on their buy and sell volumes across different indices [9][10] - Stocks expected to see significant net buying include Shenghong Technology, Dongshan Precision, and Guangqi Technology, with projected net buying scales of 4.865 billion yuan, 4.791 billion yuan, and 3.487 billion yuan respectively [10][11] Group 3 - The article identifies stocks with a projected net selling scale exceeding 5 billion yuan, including Yangguang Electric Power, Zhongji Xuchuang, and Hanwha Technology, with expected net selling scales of 5.679 billion yuan, 3.898 billion yuan, and 3.125 billion yuan respectively [12][13] - Stocks with high impact coefficients, indicating significant potential market impact due to adjustments, include Taipai Group, Jiangzhong Pharmaceutical, and Shandong Power, with coefficients of 8.69, 8.44, and 6.99 respectively [11][12]
——金融工程市场跟踪周报20251130:量能决定短期反弹高度-20251130
EBSCN· 2025-11-30 07:45
2025 年 11 月 30 日 总量研究 量能决定短期反弹高度 ——金融工程市场跟踪周报 20251130 本周(2025.11.24-2025.11.28,下同)A 股市场震荡反弹,创业板指领涨主要 宽基指数。量能表现方面,本周主要宽基指数量能逆势收缩,当前量能状态与市 场反弹表现不匹配,后续反弹力度或受量能压制收窄。资金面方面,本周融资增 加额转正,股票型 ETF 资金延续净流出,资金方面仍有分歧。 结合本周市场反弹高度、量能表现以及资金分歧状态,后市反弹力度或减弱,市 场再度进入震荡区间。中长线仍看好"红利+科技"主线,红利或在波动方面占 优。 本周上证综指上涨 1.40%,上证 50 上涨 0.47%,沪深 300 上涨 1.64%,中证 500 上涨 3.14%,中证 1000 上涨 3.77%,创业板指上涨 4.54%,北证 50 指数 上涨 0.75%。 截至 2025 年 11 月 28 日,宽基指数来看,上证指数和上证 50 指数处于估值分 位数"危险"等级,沪深 300、中证 500、中证 1000 和创业板指处于估值分位 数"适中"等级。 中信一级行业分类来看,煤炭、钢铁、建材、轻工制 ...
由创新高个股看市场投资热点
量化藏经阁· 2025-11-28 09:11
报 告 摘 要 乘势而起:市场新高趋势追踪 触及新高的个股、行业和板块可被视为市场的风向标。越来越多的研究表明动量、趋势跟踪策略的有效性。本报告旨在定期跟踪市场中创新高的个股及其 分布,以追踪市场趋势、把握市场热点。 截至2025年11月28日,上证指数、深证成指、沪深300、中证500、中证1000、中证2000、创业板指、科创50指数250日新高距离分别为3.50%、 5.40%、4.66%、6.85%、4.10%、2.78%、8.17%、13.77%。中信一级行业指数中家电、纺织服装、轻工制造、基础化工、通信行业指数距离250日 新高较近,食品饮料、综合金融、非银行金融、医药、房地产行业指数距离250日新高较远。概念指数中,家居用品、卫星导航、锂矿、林木、卫星互联 网、万得微盘股日频等权、操作系统等概念指数距离250日新高较近。 见微知著:利用创新高个股进行市场监测 截至2025年11月28日,共1043只股票在过去20个交易日间创出250日新高。其中创新高个股数量最多的是基础化工、电力设备及新能源、机械行业,创 新高个股数量占比最高的是纺织服装、电力设备及新能源、煤炭行业。按照板块分布来看,本周周期、 ...
2026年金融工程年度策略:万象更新,乘势而行
CAITONG SECURITIES· 2025-11-28 08:48
Group 1 - The public fund investment strategy shows robust growth in both scale and number, with active equity funds achieving an average return of 29.69% in 2025, outperforming major indices [2][23][27] - The top three sectors for active equity fund holdings are technology, manufacturing, and cyclical industries, indicating a strong focus on growth-oriented sectors [2][28] - The market outlook for 2026 suggests continued structural opportunities in A-shares, with technology growth remaining a key theme, while Hong Kong stocks are seen as undervalued [2][3] Group 2 - The index fund market has reached a historical high in both scale and number, with total assets amounting to 6.14 trillion yuan, reflecting a significant increase of 32.27% from the previous year [2][37][40] - The ETF segment dominates the index fund market, accounting for 76.10% of total assets, with a notable increase in industry-themed ETFs [2][38][40] - The performance of thematic funds, particularly in technology, has been outstanding, with technology-themed funds achieving an average return of 44.06% in 2025 [2][27][28]
固收定期报告:估值有支撑,关注“更高阶”低估
CAITONG SECURITIES· 2025-11-26 12:37
估值有支撑,关注"更高阶"低估 证券研究报告 固收定期报告 / 2025.11.26 核心观点 相关报告 1. 《城投 2026,风偏分化?》 2025- 11-25 2. 《2026 年度策略:经济 K 型复苏,股债 K 型交易》 2025-11-24 3. 《信用 | 年末或有一定波动 》 2025- 11-23 请阅读最后一页的重要声明! 分析师 孙彬彬 SAC 证书编号:S0160525020001 sunbb@ctsec.com 分析师 隋修平 SAC 证书编号:S0160525020003 suixp@ctsec.com 分析师 李浩时 SAC 证书编号:S0160525080002 lihs@ctsec.com 联系人 郑惠文 zhenghw01@ctsec.com 联系人 柳婧舒 liujs@ctsec.com ❖ 2026 推动转债走强的"固收资产荒"以及"权益高景气"或延续。一 方面,转债整体股性处于历史高点。基于我们 2026 年年度策略的观点,我们 认为 2026 年股债双牛依然可以期待,权益有较大的想象空间,强权益或成为 2026 年转债表现最重要的支撑。另一方面,结合长端利率保持低 ...
行业轮动周报:指数回撤下融资资金净流出,ETF资金大幅净流入,GRU调入传媒-20251125
China Post Securities· 2025-11-25 04:54
Quantitative Models and Construction Methods 1. Model Name: Diffusion Index Model - **Model Construction Idea**: The model is based on the principle of price momentum, aiming to capture upward trends in industries and sectors[22][23] - **Model Construction Process**: The diffusion index is calculated for each industry based on its price momentum. The model ranks industries by their diffusion index values and selects the top-performing industries for portfolio allocation. The model has been tracking out-of-sample performance since 2021, with adjustments made monthly or weekly based on updated diffusion index rankings[22][23] - **Model Evaluation**: The model has shown strong performance in capturing industry trends during momentum-driven markets but struggles during market reversals[22][36] 2. Model Name: GRU Factor Model - **Model Construction Idea**: This model leverages minute-level price and volume data processed through a GRU (Gated Recurrent Unit) deep learning network to generate industry factors for rotation strategies[37] - **Model Construction Process**: The GRU model uses historical price and volume data as input to train a deep learning network. The network identifies patterns and generates factors that are used to rank industries. The top-ranked industries are selected for portfolio allocation. The model is updated weekly to reflect changes in the rankings[30][31][37] - **Model Evaluation**: The GRU model performs well in short-term trading environments but has shown limited effectiveness in long-term scenarios. It is also sensitive to extreme market conditions[37] --- Backtesting Results of Models 1. Diffusion Index Model - **Weekly Average Return**: -5.50% - **Excess Return over Equal-Weighted CSI First-Level Industry Index**: -0.42% - **November-to-Date Excess Return**: -1.13% - **Year-to-Date Excess Return**: 1.22%[26][22][23] 2. GRU Factor Model - **Weekly Average Return**: -4.71% - **Excess Return over Equal-Weighted CSI First-Level Industry Index**: 0.35% - **November-to-Date Excess Return**: 2.92% - **Year-to-Date Excess Return**: -2.74%[35][30][31] --- Quantitative Factors and Construction Methods 1. Factor Name: Diffusion Index - **Factor Construction Idea**: The diffusion index measures the momentum of industries by analyzing price trends and ranks industries based on their momentum[22][23] - **Factor Construction Process**: The diffusion index is calculated for each industry using price momentum data. Industries are ranked based on their diffusion index values, and the top-ranked industries are selected for portfolio allocation. The index is updated weekly or monthly to reflect changes in industry momentum[22][23] - **Factor Evaluation**: The factor effectively captures upward trends in industries but may underperform during market reversals[22][36] 2. Factor Name: GRU Industry Factor - **Factor Construction Idea**: The GRU industry factor is derived from minute-level price and volume data processed through a GRU deep learning network to identify patterns and rank industries[37] - **Factor Construction Process**: The GRU model processes historical price and volume data through a deep learning network. The network generates factors that are used to rank industries. The top-ranked industries are selected for portfolio allocation, with updates made weekly[30][31][37] - **Factor Evaluation**: The factor is effective in short-term trading environments but less so in long-term scenarios. It is also sensitive to extreme market conditions[37] --- Backtesting Results of Factors 1. Diffusion Index Factor - **Weekly Average Return**: -5.50% - **Excess Return over Equal-Weighted CSI First-Level Industry Index**: -0.42% - **November-to-Date Excess Return**: -1.13% - **Year-to-Date Excess Return**: 1.22%[26][22][23] 2. GRU Industry Factor - **Weekly Average Return**: -4.71% - **Excess Return over Equal-Weighted CSI First-Level Industry Index**: 0.35% - **November-to-Date Excess Return**: 2.92% - **Year-to-Date Excess Return**: -2.74%[35][30][31]